Documentation

Mathlib.Algebra.MonoidAlgebra.MapDomain

Maps of monoid algebras #

This file defines maps of monoid algebras along both the ring and monoid arguments.

Multiplicative monoids #

@[reducible, inline]
abbrev MonoidAlgebra.mapDomain {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] (f : M → N) (x : MonoidAlgebra R M) :

Given a function f : M → N between magmas, return the corresponding map R[M] → R[N] obtained by summing the coefficients along each fiber of f.

Equations
    Instances For
      @[reducible, inline]
      abbrev AddMonoidAlgebra.mapDomain {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] (f : M → N) (x : AddMonoidAlgebra R M) :

      Given a function f : M → N between magmas, return the corresponding map R[M] → R[N] obtained by summing the coefficients along each fiber of f.

      Equations
        Instances For
          theorem MonoidAlgebra.mapDomain_zero {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] (f : M → N) :
          mapDomain f 0 = 0
          theorem AddMonoidAlgebra.mapDomain_zero {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] (f : M → N) :
          mapDomain f 0 = 0
          theorem MonoidAlgebra.mapDomain_add {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] (f : M → N) (x y : MonoidAlgebra R M) :
          mapDomain f (x + y) = mapDomain f x + mapDomain f y
          theorem AddMonoidAlgebra.mapDomain_add {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] (f : M → N) (x y : AddMonoidAlgebra R M) :
          mapDomain f (x + y) = mapDomain f x + mapDomain f y
          theorem MonoidAlgebra.mapDomain_sum {R : Type u_2} {S : Type u_3} {M : Type u_5} {N : Type u_6} [Semiring R] [Semiring S] (f : M → N) (x : MonoidAlgebra S M) (v : M → S → MonoidAlgebra R M) :
          mapDomain f (Finsupp.sum x v) = Finsupp.sum x fun (a : M) (b : S) => mapDomain f (v a b)
          theorem AddMonoidAlgebra.mapDomain_sum {R : Type u_2} {S : Type u_3} {M : Type u_5} {N : Type u_6} [Semiring R] [Semiring S] (f : M → N) (x : AddMonoidAlgebra S M) (v : M → S → AddMonoidAlgebra R M) :
          mapDomain f (Finsupp.sum x v) = Finsupp.sum x fun (a : M) (b : S) => mapDomain f (v a b)
          theorem MonoidAlgebra.mapDomain_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] {f : M → N} {a : M} {r : R} :
          mapDomain f (single a r) = single (f a) r
          theorem AddMonoidAlgebra.mapDomain_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] {f : M → N} {a : M} {r : R} :
          mapDomain f (single a r) = single (f a) r
          theorem MonoidAlgebra.mapDomain_injective {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] {f : M → N} (hf : Function.Injective f) :
          @[simp]
          theorem MonoidAlgebra.mapDomain_one {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [One M] [One N] {F : Type u_8} [FunLike F M N] [OneHomClass F M N] (f : F) :
          mapDomain (⇑f) 1 = 1
          @[simp]
          theorem AddMonoidAlgebra.mapDomain_one {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Zero M] [Zero N] {F : Type u_8} [FunLike F M N] [ZeroHomClass F M N] (f : F) :
          mapDomain (⇑f) 1 = 1
          theorem MonoidAlgebra.mapDomain_mul {F : Type u_1} {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Mul M] [Mul N] [FunLike F M N] [MulHomClass F M N] (f : F) (x y : MonoidAlgebra R M) :
          mapDomain (⇑f) (x * y) = mapDomain (⇑f) x * mapDomain (⇑f) y
          theorem AddMonoidAlgebra.mapDomain_mul {F : Type u_1} {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Add M] [Add N] [FunLike F M N] [AddHomClass F M N] (f : F) (x y : AddMonoidAlgebra R M) :
          mapDomain (⇑f) (x * y) = mapDomain (⇑f) x * mapDomain (⇑f) y

          If f : G → H is a multiplicative homomorphism between two monoids, then MonoidAlgebra.mapDomain f is a ring homomorphism between their monoid algebras.

          See also MulEquiv.monoidAlgebraCongrRight.

          Equations
            Instances For

              If f : G → H is a multiplicative homomorphism between two additive monoids, then AddMonoidAlgebra.mapDomain f is a ring homomorphism between their additive monoid algebras.

              Equations
                Instances For
                  @[simp]
                  theorem AddMonoidAlgebra.mapDomainNonUnitalRingHom_apply (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Add M] [Add N] (f : M →ₙ+ N) (x : AddMonoidAlgebra R M) :
                  @[simp]
                  theorem MonoidAlgebra.mapDomainNonUnitalRingHom_apply (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Mul M] [Mul N] (f : M →ₙ* N) (x : MonoidAlgebra R M) :
                  def MonoidAlgebra.mapDomainAddEquiv (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Mul M] [Mul N] (e : M ā‰ƒ N) :

                  Equivalent monoids have additively isomorphic monoid algebras.

                  MonoidAlgebra.mapDomain as an AddEquiv.

                  Equations
                    Instances For
                      def AddMonoidAlgebra.mapDomainAddEquiv (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Add M] [Add N] (e : M ā‰ƒ N) :

                      Equivalent additive monoids have additively isomorphic additive monoid algebras.

                      AddMonoidAlgebra.mapDomain as an AddEquiv.

                      Equations
                        Instances For
                          @[simp]
                          theorem MonoidAlgebra.mapDomainAddEquiv_apply {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Mul M] [Mul N] (e : M ā‰ƒ N) (x : MonoidAlgebra R M) (n : N) :
                          ((mapDomainAddEquiv R e) x) n = x (e.symm n)
                          @[simp]
                          theorem AddMonoidAlgebra.mapDomainAddEquiv_apply {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Add M] [Add N] (e : M ā‰ƒ N) (x : AddMonoidAlgebra R M) (n : N) :
                          ((mapDomainAddEquiv R e) x) n = x (e.symm n)
                          @[simp]
                          theorem MonoidAlgebra.mapDomainAddEquiv_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Mul M] [Mul N] (e : M ā‰ƒ N) (r : R) (m : M) :
                          (mapDomainAddEquiv R e) (single m r) = single (e m) r
                          @[simp]
                          theorem AddMonoidAlgebra.mapDomainAddEquiv_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Add M] [Add N] (e : M ā‰ƒ N) (r : R) (m : M) :
                          (mapDomainAddEquiv R e) (single m r) = single (e m) r
                          @[simp]
                          theorem MonoidAlgebra.symm_mapDomainAddEquiv {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Mul M] [Mul N] (e : M ā‰ƒ N) :
                          @[simp]
                          theorem AddMonoidAlgebra.symm_mapDomainAddEquiv {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Add M] [Add N] (e : M ā‰ƒ N) :
                          @[simp]
                          theorem MonoidAlgebra.mapDomainAddEquiv_trans {R : Type u_2} {M : Type u_5} {N : Type u_6} {O : Type u_7} [Semiring R] [Mul M] [Mul N] [Mul O] (e₁ : M ā‰ƒ N) (eā‚‚ : N ā‰ƒ O) :
                          mapDomainAddEquiv R (e₁.trans eā‚‚) = (mapDomainAddEquiv R e₁).trans (mapDomainAddEquiv R eā‚‚)
                          @[simp]
                          theorem AddMonoidAlgebra.mapDomainAddEquiv_trans {R : Type u_2} {M : Type u_5} {N : Type u_6} {O : Type u_7} [Semiring R] [Add M] [Add N] [Add O] (e₁ : M ā‰ƒ N) (eā‚‚ : N ā‰ƒ O) :
                          mapDomainAddEquiv R (e₁.trans eā‚‚) = (mapDomainAddEquiv R e₁).trans (mapDomainAddEquiv R eā‚‚)
                          def MonoidAlgebra.mapRangeAddEquiv {R : Type u_2} {S : Type u_3} (M : Type u_5) [Semiring R] [Semiring S] [Mul M] (e : R ā‰ƒ+ S) :

                          Additively isomorphic rings have additively isomorphic monoid algebras.

                          Finsupp.mapRange as an AddEquiv.

                          Equations
                            Instances For
                              def AddMonoidAlgebra.mapRangeAddEquiv {R : Type u_2} {S : Type u_3} (M : Type u_5) [Semiring R] [Semiring S] [Add M] (e : R ā‰ƒ+ S) :

                              Additively isomorphic rings have additively isomorphic additive monoid algebras.

                              Finsupp.mapRange as an AddEquiv.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem MonoidAlgebra.mapRangeAddEquiv_apply {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Mul M] (e : R ā‰ƒ+ S) (x : MonoidAlgebra R M) (m : M) :
                                  ((mapRangeAddEquiv M e) x) m = e (x m)
                                  @[simp]
                                  theorem AddMonoidAlgebra.mapRangeAddEquiv_apply {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Add M] (e : R ā‰ƒ+ S) (x : AddMonoidAlgebra R M) (m : M) :
                                  ((mapRangeAddEquiv M e) x) m = e (x m)
                                  @[simp]
                                  theorem MonoidAlgebra.mapRangeAddEquiv_single {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Mul M] (e : R ā‰ƒ+ S) (r : R) (m : M) :
                                  (mapRangeAddEquiv M e) (single m r) = single m (e r)
                                  @[simp]
                                  theorem AddMonoidAlgebra.mapRangeAddEquiv_single {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Add M] (e : R ā‰ƒ+ S) (r : R) (m : M) :
                                  (mapRangeAddEquiv M e) (single m r) = single m (e r)
                                  @[simp]
                                  theorem MonoidAlgebra.symm_mapRangeAddEquiv {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Mul M] (e : R ā‰ƒ+ S) :
                                  @[simp]
                                  theorem MonoidAlgebra.mapRangeAddEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} {M : Type u_5} [Semiring R] [Semiring S] [Semiring T] [Mul M] (e₁ : R ā‰ƒ+ S) (eā‚‚ : S ā‰ƒ+ T) :
                                  mapRangeAddEquiv M (e₁.trans eā‚‚) = (mapRangeAddEquiv M e₁).trans (mapRangeAddEquiv M eā‚‚)
                                  @[simp]
                                  theorem AddMonoidAlgebra.mapRangeAddEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} {M : Type u_5} [Semiring R] [Semiring S] [Semiring T] [Add M] (e₁ : R ā‰ƒ+ S) (eā‚‚ : S ā‰ƒ+ T) :
                                  mapRangeAddEquiv M (e₁.trans eā‚‚) = (mapRangeAddEquiv M e₁).trans (mapRangeAddEquiv M eā‚‚)
                                  def MonoidAlgebra.mapDomainRingHom (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Monoid M] [Monoid N] (f : M →* N) :

                                  If f : G → H is a multiplicative homomorphism between two monoids, then MonoidAlgebra.mapDomain f is a ring homomorphism between their monoid algebras.

                                  Equations
                                    Instances For

                                      If f : G → H is a multiplicative homomorphism between two additive monoids, then AddMonoidAlgebra.mapDomain f is a ring homomorphism between their additive monoid algebras.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem MonoidAlgebra.mapDomainRingHom_apply (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Monoid M] [Monoid N] (f : M →* N) (x : MonoidAlgebra R M) :
                                          (mapDomainRingHom R f) x = mapDomain (⇑f) x
                                          @[simp]
                                          theorem AddMonoidAlgebra.mapDomainRingHom_apply (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [AddMonoid M] [AddMonoid N] (f : M →+ N) (x : AddMonoidAlgebra R M) :
                                          (mapDomainRingHom R f) x = mapDomain (⇑f) x
                                          theorem MonoidAlgebra.ringHom_ext_iff {R : Type u_1} {S : Type u_2} {M : Type u_4} [Semiring R] [MulOneClass M] [Semiring S] {f g : MonoidAlgebra R M →+* S} :
                                          f = g ↔ (āˆ€ (r : R), f (single 1 r) = g (single 1 r)) ∧ āˆ€ (m : M), f (single m 1) = g (single m 1)
                                          @[simp]
                                          theorem MonoidAlgebra.mapDomainRingHom_comp {R : Type u_2} {M : Type u_5} {N : Type u_6} {O : Type u_7} [Semiring R] [Monoid M] [Monoid N] [Monoid O] (f : N →* O) (g : M →* N) :
                                          @[simp]
                                          theorem AddMonoidAlgebra.mapDomainRingHom_comp {R : Type u_2} {M : Type u_5} {N : Type u_6} {O : Type u_7} [Semiring R] [AddMonoid M] [AddMonoid N] [AddMonoid O] (f : N →+ O) (g : M →+ N) :
                                          noncomputable def MonoidAlgebra.mapRangeRingHom {R : Type u_2} {S : Type u_3} (M : Type u_5) [Semiring R] [Semiring S] [Monoid M] (f : R →+* S) :

                                          The ring homomorphism of monoid algebras induced by a homomorphism of the base rings.

                                          Equations
                                            Instances For
                                              noncomputable def AddMonoidAlgebra.mapRangeRingHom {R : Type u_2} {S : Type u_3} (M : Type u_5) [Semiring R] [Semiring S] [AddMonoid M] (f : R →+* S) :

                                              The ring homomorphism of additive monoid algebras induced by a homomorphism of the base rings.

                                              Equations
                                                Instances For
                                                  theorem MonoidAlgebra.coe_mapRangeRingHom {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Monoid M] (f : R →+* S) :
                                                  ⇑(mapRangeRingHom M f) = Finsupp.mapRange ⇑f ⋯
                                                  theorem AddMonoidAlgebra.coe_mapRangeRingHom {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [AddMonoid M] (f : R →+* S) :
                                                  ⇑(mapRangeRingHom M f) = Finsupp.mapRange ⇑f ⋯
                                                  @[simp]
                                                  theorem MonoidAlgebra.mapRangeRingHom_apply {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Monoid M] (f : R →+* S) (x : MonoidAlgebra R M) (m : M) :
                                                  ((mapRangeRingHom M f) x) m = f (x m)
                                                  @[simp]
                                                  theorem AddMonoidAlgebra.mapRangeRingHom_apply {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [AddMonoid M] (f : R →+* S) (x : AddMonoidAlgebra R M) (m : M) :
                                                  ((mapRangeRingHom M f) x) m = f (x m)
                                                  @[simp]
                                                  theorem MonoidAlgebra.mapRangeRingHom_single {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Monoid M] (f : R →+* S) (a : M) (b : R) :
                                                  (mapRangeRingHom M f) (single a b) = single a (f b)
                                                  @[simp]
                                                  theorem AddMonoidAlgebra.mapRangeRingHom_single {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [AddMonoid M] (f : R →+* S) (a : M) (b : R) :
                                                  (mapRangeRingHom M f) (single a b) = single a (f b)
                                                  @[simp]
                                                  theorem MonoidAlgebra.mapRangeRingHom_comp {R : Type u_2} {S : Type u_3} {T : Type u_4} {M : Type u_5} [Semiring R] [Semiring S] [Semiring T] [Monoid M] (f : S →+* T) (g : R →+* S) :
                                                  @[simp]
                                                  theorem AddMonoidAlgebra.mapRangeRingHom_comp {R : Type u_2} {S : Type u_3} {T : Type u_4} {M : Type u_5} [Semiring R] [Semiring S] [Semiring T] [AddMonoid M] (f : S →+* T) (g : R →+* S) :
                                                  def MonoidAlgebra.mapDomainRingEquiv (R : Type u_2) {M : Type u_5} {N : Type u_6} [Semiring R] [Monoid M] [Monoid N] (e : M ā‰ƒ* N) :

                                                  Isomorphic monoids have isomorphic monoid algebras.

                                                  Equations
                                                    Instances For

                                                      Isomorphic monoids have isomorphic additive monoid algebras.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem MonoidAlgebra.mapDomainRingEquiv_apply {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Monoid M] [Monoid N] (e : M ā‰ƒ* N) (x : MonoidAlgebra R M) (n : N) :
                                                          ((mapDomainRingEquiv R e) x) n = x (e.symm n)
                                                          @[simp]
                                                          theorem AddMonoidAlgebra.mapDomainRingEquiv_apply {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [AddMonoid M] [AddMonoid N] (e : M ā‰ƒ+ N) (x : AddMonoidAlgebra R M) (n : N) :
                                                          ((mapDomainRingEquiv R e) x) n = x (e.symm n)
                                                          @[simp]
                                                          theorem MonoidAlgebra.mapDomainRingEquiv_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Monoid M] [Monoid N] (e : M ā‰ƒ* N) (r : R) (m : M) :
                                                          (mapDomainRingEquiv R e) (single m r) = single (e m) r
                                                          @[simp]
                                                          theorem AddMonoidAlgebra.mapDomainRingEquiv_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [AddMonoid M] [AddMonoid N] (e : M ā‰ƒ+ N) (r : R) (m : M) :
                                                          (mapDomainRingEquiv R e) (single m r) = single (e m) r
                                                          @[simp]
                                                          theorem MonoidAlgebra.mapDomainRingEquiv_trans {R : Type u_2} {M : Type u_5} {N : Type u_6} {O : Type u_7} [Semiring R] [Monoid M] [Monoid N] [Monoid O] (e₁ : M ā‰ƒ* N) (eā‚‚ : N ā‰ƒ* O) :
                                                          mapDomainRingEquiv R (e₁.trans eā‚‚) = (mapDomainRingEquiv R e₁).trans (mapDomainRingEquiv R eā‚‚)
                                                          @[simp]
                                                          theorem AddMonoidAlgebra.mapDomainRingEquiv_trans {R : Type u_2} {M : Type u_5} {N : Type u_6} {O : Type u_7} [Semiring R] [AddMonoid M] [AddMonoid N] [AddMonoid O] (e₁ : M ā‰ƒ+ N) (eā‚‚ : N ā‰ƒ+ O) :
                                                          mapDomainRingEquiv R (e₁.trans eā‚‚) = (mapDomainRingEquiv R e₁).trans (mapDomainRingEquiv R eā‚‚)
                                                          def MonoidAlgebra.mapRangeRingEquiv {R : Type u_2} {S : Type u_3} (M : Type u_5) [Semiring R] [Semiring S] [Monoid M] (e : R ā‰ƒ+* S) :

                                                          Isomorphic rings have isomorphic monoid algebras.

                                                          Equations
                                                            Instances For

                                                              Isomorphic rings have isomorphic additive monoid algebras.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem MonoidAlgebra.mapRangeRingEquiv_apply {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Monoid M] (e : R ā‰ƒ+* S) (x : MonoidAlgebra R M) (m : M) :
                                                                  ((mapRangeRingEquiv M e) x) m = e (x m)
                                                                  @[simp]
                                                                  theorem AddMonoidAlgebra.mapRangeRingEquiv_apply {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [AddMonoid M] (e : R ā‰ƒ+* S) (x : AddMonoidAlgebra R M) (m : M) :
                                                                  ((mapRangeRingEquiv M e) x) m = e (x m)
                                                                  @[simp]
                                                                  theorem MonoidAlgebra.mapRangeRingEquiv_single {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [Monoid M] (e : R ā‰ƒ+* S) (r : R) (m : M) :
                                                                  (mapRangeRingEquiv M e) (single m r) = single m (e r)
                                                                  @[simp]
                                                                  theorem AddMonoidAlgebra.mapRangeRingEquiv_single {R : Type u_2} {S : Type u_3} {M : Type u_5} [Semiring R] [Semiring S] [AddMonoid M] (e : R ā‰ƒ+* S) (r : R) (m : M) :
                                                                  (mapRangeRingEquiv M e) (single m r) = single m (e r)
                                                                  @[simp]
                                                                  theorem MonoidAlgebra.mapRangeRingEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} {M : Type u_5} [Semiring R] [Semiring S] [Semiring T] [Monoid M] (e₁ : R ā‰ƒ+* S) (eā‚‚ : S ā‰ƒ+* T) :
                                                                  mapRangeRingEquiv M (e₁.trans eā‚‚) = (mapRangeRingEquiv M e₁).trans (mapRangeRingEquiv M eā‚‚)
                                                                  @[simp]
                                                                  theorem AddMonoidAlgebra.mapRangeRingEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} {M : Type u_5} [Semiring R] [Semiring S] [Semiring T] [AddMonoid M] (e₁ : R ā‰ƒ+* S) (eā‚‚ : S ā‰ƒ+* T) :
                                                                  mapRangeRingEquiv M (e₁.trans eā‚‚) = (mapRangeRingEquiv M e₁).trans (mapRangeRingEquiv M eā‚‚)

                                                                  Nested monoid algebras can be taken in an arbitrary order.

                                                                  Equations
                                                                    Instances For

                                                                      Nested additive monoid algebras can be taken in an arbitrary order.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem MonoidAlgebra.commRingEquiv_single_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [Monoid M] [Monoid N] (m : M) (n : N) (r : R) :
                                                                          @[simp]
                                                                          theorem AddMonoidAlgebra.commRingEquiv_single_single {R : Type u_2} {M : Type u_5} {N : Type u_6} [Semiring R] [AddMonoid M] [AddMonoid N] (m : M) (n : N) (r : R) :

                                                                          Conversions between AddMonoidAlgebra and MonoidAlgebra #

                                                                          We have not defined AddMonoidAlgebra k G = MonoidAlgebra k (Multiplicative G) because historically this caused problems; since the changes that have made nsmul definitional, this would be possible, but for now we just construct the ring isomorphisms using RingEquiv.refl _.

                                                                          The equivalence between AddMonoidAlgebra and MonoidAlgebra in terms of Multiplicative

                                                                          Equations
                                                                            Instances For

                                                                              The equivalence between MonoidAlgebra and AddMonoidAlgebra in terms of Additive

                                                                              Equations
                                                                                Instances For