Lie admissible rings and algebras #
We define a Lie-admissible ring as a nonunital nonassociative ring such that the associator satisfies the identity
associator x y z + associator z x y + associator y z x =
associator y x z + associator z y x + associator x z y
Main definitions: #
Main results #
LieAdmissibleRing.instLieRing: a Lie-admissible ring as a Lie ringLeftPreLieRing.instLieAdmissibleRing: a left pre-Lie ring as a Lie admissible ringRightPreLieRing.instLieAdmissibleRing: a right pre-Lie ring as a Lie admissible ringLieAdmissibleAlgebra.instLieAlgebra: a Lie-admissible algebra as a Lie algebraLeftPreLieAlgebra.instLieAdmissibleAlgebra: a left pre-Lie ring as a Lie admissible algebraRightPreLieAlgebra.instLieAdmissibleAlgebra: a right pre-Lie ring as a Lie admissible algebra
Implementation Notes #
Algebras are implemented as extending Module, IsScalarTower and SMulCommClass following the
documentation of Algebra.
References #
[Munthe-Kaas, H.Z., Lundervold, A. On Post-Lie Algebras, LieβButcher Series and Moving Frames.][munthe-kaas_lundervold_2013]
A LieAdmissibleRing is a NonUnitalNonAssocRing such that the canonical bracket
β
x, yβ := x * y - y * x turns it into a LieRing. This is expressed by an associator identity.
- add : L β L β L
- zero : L
- neg : L β L
- sub : L β L β L
- zsmul_neg' (n : β) (a : L) : SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (βn.succ) a
- mul : L β L β L
- assoc_def (x y z : L) : associator x y z + associator z x y + associator y z x = associator y x z + associator z y x + associator x z y
Instances
A LieAdmissibleAlgebra is a LieAdmissibleRing equipped with a compatible action by scalars
from a commutative ring.
- smul : R β L β L
Instances
By definition, every LieAdmissibleRing yields a LieRing with the commutator bracket.
Equations
Every LieAdmissibleAlgebra is a LieAlgebra with the commutator bracket.
Equations
LeftPreLieRings are examples of LieAdmissibleRings by the commutatitvity assumption on the
associator.
Equations
Equations
RightPreLieRings are examples of LieAdmissibleRings by the commutatitvity assumption on
the associator.