Cardinality and limit of sum of indicators #
This file contains results relating the cardinality of subsets of โ and limits, limsups of sums of indicators.
Tags #
finite, indicator, limsup, tendsto
theorem
Set.sum_indicator_eventually_eq_card
{ฮฑ : Type u_1}
[AddCommMonoid ฮฑ]
(a : ฮฑ)
{s : Set โ}
(hs : s.Finite)
:
theorem
Set.infinite_iff_tendsto_sum_indicator_atTop
{R : Type u_1}
[AddCommMonoid R]
[PartialOrder R]
[IsOrderedAddMonoid R]
[AddLeftStrictMono R]
[Archimedean R]
{r : R}
(h : 0 < r)
{s : Set โ}
:
s.Infinite โ Filter.Tendsto (fun (n : โ) => โ k โ Finset.range n, s.indicator (fun (x : โ) => r) k) Filter.atTop Filter.atTop
theorem
Set.limsup_eq_tendsto_sum_indicator_atTop
{ฮฑ : Type u_1}
{R : Type u_2}
[AddCommMonoid R]
[PartialOrder R]
[IsOrderedAddMonoid R]
[AddLeftStrictMono R]
[Archimedean R]
{r : R}
(h : 0 < r)
(s : โ โ Set ฮฑ)
:
Filter.limsup s Filter.atTop = {ฯ : ฮฑ | Filter.Tendsto (fun (n : โ) => โ k โ Finset.range n, (s k).indicator (fun (x : ฮฑ) => r) ฯ) Filter.atTop
Filter.atTop}