Documentation

Mathlib.Algebra.Order.Archimedean.IndicatorCard

Cardinality and limit of sum of indicators #

This file contains results relating the cardinality of subsets of โ„• and limits, limsups of sums of indicators.

Tags #

finite, indicator, limsup, tendsto

theorem Set.sum_indicator_eventually_eq_card {ฮฑ : Type u_1} [AddCommMonoid ฮฑ] (a : ฮฑ) {s : Set โ„•} (hs : s.Finite) :
โˆ€แถ  (n : โ„•) in Filter.atTop, โˆ‘ k โˆˆ Finset.range n, s.indicator (fun (x : โ„•) => a) k = Nat.card โ†‘s โ€ข a
theorem Set.limsup_eq_tendsto_sum_indicator_atTop {ฮฑ : Type u_1} {R : Type u_2} [AddCommMonoid R] [PartialOrder R] [IsOrderedAddMonoid R] [AddLeftStrictMono R] [Archimedean R] {r : R} (h : 0 < r) (s : โ„• โ†’ Set ฮฑ) :
Filter.limsup s Filter.atTop = {ฯ‰ : ฮฑ | Filter.Tendsto (fun (n : โ„•) => โˆ‘ k โˆˆ Finset.range n, (s k).indicator (fun (x : ฮฑ) => r) ฯ‰) Filter.atTop Filter.atTop}