Big operators indexed by intervals #
This file proves lemmas about ā x ā Ixx a b, f x and ā x ā Ixx a b, f x.
theorem
Finset.mul_prod_Ico_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.add_sum_Ico_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.prod_Ico_mul_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.sum_Ico_add_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.mul_prod_Ioc_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.add_sum_Ioc_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.prod_Ioc_mul_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.sum_Ioc_add_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a ⤠b)
:
theorem
Finset.mul_prod_Ioo_eq_prod_Ico
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.add_sum_Ioo_eq_sum_Ico
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.prod_Ioo_mul_eq_prod_Ico
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.sum_Ioo_add_eq_sum_Ico
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.mul_prod_Ioo_eq_prod_Ioc
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.add_sum_Ioo_eq_sum_Ioc
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.prod_Ioo_mul_eq_prod_Ioc
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.sum_Ioo_add_eq_sum_Ioc
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
{a b : α}
[PartialOrder α]
[LocallyFiniteOrder α]
(h : a < b)
:
theorem
Finset.mul_prod_Ioi_eq_prod_Ici
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.add_sum_Ioi_eq_sum_Ici
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.prod_Ioi_mul_eq_prod_Ici
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.sum_Ioi_add_eq_sum_Ici
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.mul_prod_Iio_eq_prod_Iic
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.add_sum_Iio_eq_sum_Iic
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.prod_Iio_mul_eq_prod_Iic
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.sum_Iio_add_eq_sum_Iic
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α ā M}
[PartialOrder α]
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.prod_Ico_mul_eq_prod_Ico_add_one
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{a b : α}
[LinearOrder α]
[LocallyFiniteOrder α]
[AddMonoidWithOne α]
[SuccAddOrder α]
[NoMaxOrder α]
(hab : a ⤠b)
(f : α ā M)
:
theorem
Finset.sum_Ico_add_eq_sum_Ico_add_one
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{a b : α}
[LinearOrder α]
[LocallyFiniteOrder α]
[AddMonoidWithOne α]
[SuccAddOrder α]
[NoMaxOrder α]
(hab : a ⤠b)
(f : α ā M)
:
theorem
Finset.prod_prod_Ioi_mul_eq_prod_prod_off_diag
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
[LinearOrder α]
[Fintype α]
[LocallyFiniteOrderTop α]
[LocallyFiniteOrderBot α]
(f : α ā α ā M)
:
theorem
Finset.sum_sum_Ioi_add_eq_sum_sum_off_diag
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
[LinearOrder α]
[Fintype α]
[LocallyFiniteOrderTop α]
[LocallyFiniteOrderBot α]
(f : α ā α ā M)
:
theorem
Finset.prod_eq_prod_range_sdiff
{α : Type u_3}
{β : Type u_4}
[DecidableEq α]
[CommMonoid β]
(s : ā ā Finset α)
(hs : Monotone s)
(g : α ā β)
(n : ā)
:
Given a sequence of finite sets sā ā sā ā sā āÆ, the product of gįµ¢ over i ā sā is equal
to ā_{i ā sā} gįµ¢ * ā_{j < n, i ā sā±¼āā \ sā±¼} gįµ¢.
theorem
Finset.sum_eq_sum_range_sdiff
{α : Type u_3}
{β : Type u_4}
[DecidableEq α]
[AddCommMonoid β]
(s : ā ā Finset α)
(hs : Monotone s)
(g : α ā β)
(n : ā)
:
Given a sequence of finite sets sā ā sā ā sā āÆ, the sum of gįµ¢ over i ā sā is
equal to ā_{i ā sā} gįµ¢ + ā_{j < n, i ā sā±¼āā \ sā±¼} gįµ¢.