Documentation

Mathlib.Algebra.Order.BigOperators.Group.LocallyFinite

Big operators indexed by intervals #

This file proves lemmas about āˆ x ∈ Ixx a b, f x and āˆ‘ x ∈ Ixx a b, f x.

theorem Finset.mul_prod_Ico_eq_prod_Icc {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
f b * āˆ x ∈ Ico a b, f x = āˆ x ∈ Icc a b, f x
theorem Finset.add_sum_Ico_eq_sum_Icc {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
f b + āˆ‘ x ∈ Ico a b, f x = āˆ‘ x ∈ Icc a b, f x
theorem Finset.prod_Ico_mul_eq_prod_Icc {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
(āˆ x ∈ Ico a b, f x) * f b = āˆ x ∈ Icc a b, f x
theorem Finset.sum_Ico_add_eq_sum_Icc {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
āˆ‘ x ∈ Ico a b, f x + f b = āˆ‘ x ∈ Icc a b, f x
theorem Finset.mul_prod_Ioc_eq_prod_Icc {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
f a * āˆ x ∈ Ioc a b, f x = āˆ x ∈ Icc a b, f x
theorem Finset.add_sum_Ioc_eq_sum_Icc {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
f a + āˆ‘ x ∈ Ioc a b, f x = āˆ‘ x ∈ Icc a b, f x
theorem Finset.prod_Ioc_mul_eq_prod_Icc {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
(āˆ x ∈ Ioc a b, f x) * f a = āˆ x ∈ Icc a b, f x
theorem Finset.sum_Ioc_add_eq_sum_Icc {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a ≤ b) :
āˆ‘ x ∈ Ioc a b, f x + f a = āˆ‘ x ∈ Icc a b, f x
theorem Finset.mul_prod_Ioo_eq_prod_Ico {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
f a * āˆ x ∈ Ioo a b, f x = āˆ x ∈ Ico a b, f x
theorem Finset.add_sum_Ioo_eq_sum_Ico {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
f a + āˆ‘ x ∈ Ioo a b, f x = āˆ‘ x ∈ Ico a b, f x
theorem Finset.prod_Ioo_mul_eq_prod_Ico {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
(āˆ x ∈ Ioo a b, f x) * f a = āˆ x ∈ Ico a b, f x
theorem Finset.sum_Ioo_add_eq_sum_Ico {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
āˆ‘ x ∈ Ioo a b, f x + f a = āˆ‘ x ∈ Ico a b, f x
theorem Finset.mul_prod_Ioo_eq_prod_Ioc {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
f b * āˆ x ∈ Ioo a b, f x = āˆ x ∈ Ioc a b, f x
theorem Finset.add_sum_Ioo_eq_sum_Ioc {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
f b + āˆ‘ x ∈ Ioo a b, f x = āˆ‘ x ∈ Ioc a b, f x
theorem Finset.prod_Ioo_mul_eq_prod_Ioc {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
(āˆ x ∈ Ioo a b, f x) * f b = āˆ x ∈ Ioc a b, f x
theorem Finset.sum_Ioo_add_eq_sum_Ioc {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} {a b : α} [PartialOrder α] [LocallyFiniteOrder α] (h : a < b) :
āˆ‘ x ∈ Ioo a b, f x + f b = āˆ‘ x ∈ Ioc a b, f x
theorem Finset.prod_eq_prod_Ico_succ_bot {M : Type u_2} [CommMonoid M] {a b : ā„•} (hab : a < b) (f : ā„• → M) :
āˆ k ∈ Ico a b, f k = f a * āˆ k ∈ Ico (a + 1) b, f k
theorem Finset.sum_eq_sum_Ico_succ_bot {M : Type u_2} [AddCommMonoid M] {a b : ā„•} (hab : a < b) (f : ā„• → M) :
āˆ‘ k ∈ Ico a b, f k = f a + āˆ‘ k ∈ Ico (a + 1) b, f k
theorem Finset.mul_prod_Ioi_eq_prod_Ici {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderTop α] (a : α) :
f a * āˆ x ∈ Ioi a, f x = āˆ x ∈ Ici a, f x
theorem Finset.add_sum_Ioi_eq_sum_Ici {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderTop α] (a : α) :
f a + āˆ‘ x ∈ Ioi a, f x = āˆ‘ x ∈ Ici a, f x
theorem Finset.prod_Ioi_mul_eq_prod_Ici {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderTop α] (a : α) :
(āˆ x ∈ Ioi a, f x) * f a = āˆ x ∈ Ici a, f x
theorem Finset.sum_Ioi_add_eq_sum_Ici {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderTop α] (a : α) :
āˆ‘ x ∈ Ioi a, f x + f a = āˆ‘ x ∈ Ici a, f x
theorem Finset.mul_prod_Iio_eq_prod_Iic {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderBot α] (a : α) :
f a * āˆ x ∈ Iio a, f x = āˆ x ∈ Iic a, f x
theorem Finset.add_sum_Iio_eq_sum_Iic {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderBot α] (a : α) :
f a + āˆ‘ x ∈ Iio a, f x = āˆ‘ x ∈ Iic a, f x
theorem Finset.prod_Iio_mul_eq_prod_Iic {α : Type u_1} {M : Type u_2} [CommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderBot α] (a : α) :
(āˆ x ∈ Iio a, f x) * f a = āˆ x ∈ Iic a, f x
theorem Finset.sum_Iio_add_eq_sum_Iic {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {f : α → M} [PartialOrder α] [LocallyFiniteOrderBot α] (a : α) :
āˆ‘ x ∈ Iio a, f x + f a = āˆ‘ x ∈ Iic a, f x
theorem Finset.prod_Ico_mul_eq_prod_Ico_add_one {α : Type u_1} {M : Type u_2} [CommMonoid M] {a b : α} [LinearOrder α] [LocallyFiniteOrder α] [AddMonoidWithOne α] [SuccAddOrder α] [NoMaxOrder α] (hab : a ≤ b) (f : α → M) :
(āˆ x ∈ Ico a b, f x) * f b = āˆ x ∈ Ico a (b + 1), f x
theorem Finset.sum_Ico_add_eq_sum_Ico_add_one {α : Type u_1} {M : Type u_2} [AddCommMonoid M] {a b : α} [LinearOrder α] [LocallyFiniteOrder α] [AddMonoidWithOne α] [SuccAddOrder α] [NoMaxOrder α] (hab : a ≤ b) (f : α → M) :
āˆ‘ x ∈ Ico a b, f x + f b = āˆ‘ x ∈ Ico a (b + 1), f x
theorem Finset.prod_prod_Ioi_mul_eq_prod_prod_off_diag {α : Type u_1} {M : Type u_2} [CommMonoid M] [LinearOrder α] [Fintype α] [LocallyFiniteOrderTop α] [LocallyFiniteOrderBot α] (f : α → α → M) :
āˆ i : α, āˆ j ∈ Ioi i, f j i * f i j = āˆ i : α, āˆ j ∈ {i}ᶜ, f j i
theorem Finset.sum_sum_Ioi_add_eq_sum_sum_off_diag {α : Type u_1} {M : Type u_2} [AddCommMonoid M] [LinearOrder α] [Fintype α] [LocallyFiniteOrderTop α] [LocallyFiniteOrderBot α] (f : α → α → M) :
āˆ‘ i : α, āˆ‘ j ∈ Ioi i, (f j i + f i j) = āˆ‘ i : α, āˆ‘ j ∈ {i}ᶜ, f j i
theorem Finset.prod_eq_prod_range_sdiff {α : Type u_3} {β : Type u_4} [DecidableEq α] [CommMonoid β] (s : ā„• → Finset α) (hs : Monotone s) (g : α → β) (n : ā„•) :
āˆ i ∈ s n, g i = (āˆ i ∈ s 0, g i) * āˆ i ∈ range n, āˆ j ∈ s (i + 1) \ s i, g j

Given a sequence of finite sets sā‚€ āŠ† s₁ āŠ† sā‚‚ ⋯, the product of gįµ¢ over i ∈ sā‚™ is equal to āˆ_{i ∈ sā‚€} gįµ¢ * āˆ_{j < n, i ∈ sā±¼ā‚Šā‚ \ sā±¼} gįµ¢.

theorem Finset.sum_eq_sum_range_sdiff {α : Type u_3} {β : Type u_4} [DecidableEq α] [AddCommMonoid β] (s : ā„• → Finset α) (hs : Monotone s) (g : α → β) (n : ā„•) :
āˆ‘ i ∈ s n, g i = āˆ‘ i ∈ s 0, g i + āˆ‘ i ∈ range n, āˆ‘ j ∈ s (i + 1) \ s i, g j

Given a sequence of finite sets sā‚€ āŠ† s₁ āŠ† sā‚‚ ⋯, the sum of gįµ¢ over i ∈ sā‚™ is equal to āˆ‘_{i ∈ sā‚€} gįµ¢ + āˆ‘_{j < n, i ∈ sā±¼ā‚Šā‚ \ sā±¼} gįµ¢.