Documentation

Mathlib.Algebra.Order.Group.DenselyOrdered

Lemmas about densely linearly ordered groups. #

theorem le_of_forall_lt_one_mul_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b : α} (h : ε < 1, a * ε b) :
a b
theorem le_of_forall_neg_add_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b : α} (h : ε < 0, a + ε b) :
a b
theorem le_of_forall_one_lt_div_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b : α} (h : ∀ (ε : α), 1 < εa / ε b) :
a b
theorem le_of_forall_pos_sub_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b : α} (h : ∀ (ε : α), 0 < εa - ε b) :
a b
theorem le_iff_forall_lt_one_mul_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b : α} :
a b ε < 1, a * ε b
theorem le_iff_forall_neg_add_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b : α} :
a b ε < 0, a + ε b
theorem le_mul_of_forall_lt {α : Type u_1} [CommGroup α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b c : α} (h : a' > a, b' > b, c a' * b') :
c a * b
theorem le_add_of_forall_lt {α : Type u_1} [AddCommGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b c : α} (h : a' > a, b' > b, c a' + b') :
c a + b
theorem mul_le_of_forall_lt {α : Type u_1} [CommGroup α] [LinearOrder α] [MulLeftMono α] [DenselyOrdered α] {a b c : α} (h : a' < a, b' < b, a' * b' c) :
a * b c
theorem add_le_of_forall_lt {α : Type u_1} [AddCommGroup α] [LinearOrder α] [AddLeftMono α] [DenselyOrdered α] {a b c : α} (h : a' < a, b' < b, a' + b' c) :
a + b c
theorem exists_pow_lt_of_one_lt {M : Type u_2} [LinearOrder M] [DenselyOrdered M] {x : M} [CommMonoid M] [ExistsMulOfLE M] [IsOrderedCancelMonoid M] (hx : 1 < x) (n : ) :
∃ (y : M), 1 < y y ^ n < x
theorem exists_nsmul_lt_of_pos {M : Type u_2} [LinearOrder M] [DenselyOrdered M] {x : M} [AddCommMonoid M] [ExistsAddOfLE M] [IsOrderedCancelAddMonoid M] (hx : 0 < x) (n : ) :
∃ (y : M), 0 < y n y < x
theorem exists_lt_pow_of_lt_one {M : Type u_2} [LinearOrder M] [DenselyOrdered M] {x : M} [CommGroup M] [IsOrderedCancelMonoid M] (hx : x < 1) (n : ) :
y < 1, x < y ^ n
theorem exists_lt_nsmul_of_neg {M : Type u_2} [LinearOrder M] [DenselyOrdered M] {x : M} [AddCommGroup M] [IsOrderedCancelAddMonoid M] (hx : x < 0) (n : ) :
y < 0, x < n y