Documentation

Mathlib.Algebra.Order.Group.End

Relation isomorphisms form a group #

instance RelHom.instMonoid {α : Type u_1} {r : α → α → Prop} :
Equations
    theorem RelHom.one_def {α : Type u_1} {r : α → α → Prop} :
    theorem RelHom.mul_def {α : Type u_1} {r : α → α → Prop} (f g : r →r r) :
    f * g = f.comp g
    @[simp]
    theorem RelHom.coe_one {α : Type u_1} {r : α → α → Prop} :
    ⇑1 = id
    @[simp]
    theorem RelHom.coe_mul {α : Type u_1} {r : α → α → Prop} (f g : r →r r) :
    ⇑(f * g) = ⇑f ∘ ⇑g
    theorem RelHom.one_apply {α : Type u_1} {r : α → α → Prop} (a : α) :
    1 a = a
    theorem RelHom.mul_apply {α : Type u_1} {r : α → α → Prop} (e₁ eā‚‚ : r →r r) (x : α) :
    (e₁ * eā‚‚) x = e₁ (eā‚‚ x)
    instance RelEmbedding.instMonoid {α : Type u_1} {r : α → α → Prop} :
    Equations
      theorem RelEmbedding.one_def {α : Type u_1} {r : α → α → Prop} :
      theorem RelEmbedding.mul_def {α : Type u_1} {r : α → α → Prop} (f g : r ↪r r) :
      f * g = g.trans f
      @[simp]
      theorem RelEmbedding.coe_one {α : Type u_1} {r : α → α → Prop} :
      ⇑1 = id
      @[simp]
      theorem RelEmbedding.coe_mul {α : Type u_1} {r : α → α → Prop} (f g : r ↪r r) :
      ⇑(f * g) = ⇑f ∘ ⇑g
      theorem RelEmbedding.one_apply {α : Type u_1} {r : α → α → Prop} (a : α) :
      1 a = a
      theorem RelEmbedding.mul_apply {α : Type u_1} {r : α → α → Prop} (e₁ eā‚‚ : r ↪r r) (x : α) :
      (e₁ * eā‚‚) x = e₁ (eā‚‚ x)
      instance RelIso.instGroup {α : Type u_1} {r : α → α → Prop} :
      Equations
        theorem RelIso.one_def {α : Type u_1} {r : α → α → Prop} :
        theorem RelIso.mul_def {α : Type u_1} {r : α → α → Prop} (f g : r ā‰ƒr r) :
        f * g = g.trans f
        @[simp]
        theorem RelIso.coe_one {α : Type u_1} {r : α → α → Prop} :
        ⇑1 = id
        @[simp]
        theorem RelIso.coe_mul {α : Type u_1} {r : α → α → Prop} (e₁ eā‚‚ : r ā‰ƒr r) :
        ⇑(e₁ * eā‚‚) = ⇑e₁ ∘ ⇑eā‚‚
        theorem RelIso.one_apply {α : Type u_1} {r : α → α → Prop} (x : α) :
        1 x = x
        theorem RelIso.mul_apply {α : Type u_1} {r : α → α → Prop} (e₁ eā‚‚ : r ā‰ƒr r) (x : α) :
        (e₁ * eā‚‚) x = e₁ (eā‚‚ x)
        @[simp]
        theorem RelIso.inv_apply_self {α : Type u_1} {r : α → α → Prop} (e : r ā‰ƒr r) (x : α) :
        e⁻¹ (e x) = x
        @[simp]
        theorem RelIso.apply_inv_self {α : Type u_1} {r : α → α → Prop} (e : r ā‰ƒr r) (x : α) :
        e (e⁻¹ x) = x