Documentation
Mathlib
.
Algebra
.
Order
.
Group
.
End
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Defs
Mathlib.Order.RelIso.Basic
Imported by
RelHom
.
instMonoid
RelHom
.
one_def
RelHom
.
mul_def
RelHom
.
coe_one
RelHom
.
coe_mul
RelHom
.
one_apply
RelHom
.
mul_apply
RelEmbedding
.
instMonoid
RelEmbedding
.
one_def
RelEmbedding
.
mul_def
RelEmbedding
.
coe_one
RelEmbedding
.
coe_mul
RelEmbedding
.
one_apply
RelEmbedding
.
mul_apply
RelIso
.
instGroup
RelIso
.
one_def
RelIso
.
mul_def
RelIso
.
coe_one
RelIso
.
coe_mul
RelIso
.
one_apply
RelIso
.
mul_apply
RelIso
.
inv_apply_self
RelIso
.
apply_inv_self
Relation isomorphisms form a group
#
source
šø coverage
instance
RelHom
.
instMonoid
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
Monoid
(
r
ār
r
)
Equations
source
š coverage
theorem
RelHom
.
one_def
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
1
=
RelHom.id
r
source
š coverage
theorem
RelHom
.
mul_def
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
f
g
:
r
ār
r
)
:
f
*
g
=
f
.
comp
g
source
š coverage
@[simp]
theorem
RelHom
.
coe_one
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
ā
1
=
id
source
š coverage
@[simp]
theorem
RelHom
.
coe_mul
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
f
g
:
r
ār
r
)
:
ā(
f
*
g
)
=
ā
f
ā
ā
g
source
š coverage
theorem
RelHom
.
one_apply
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
a
:
α
)
:
1
a
=
a
source
š coverage
theorem
RelHom
.
mul_apply
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
eā
eā
:
r
ār
r
)
(
x
:
α
)
:
(
eā
*
eā
)
x
=
eā
(
eā
x
)
source
šø coverage
instance
RelEmbedding
.
instMonoid
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
Monoid
(
r
āŖr
r
)
Equations
source
š coverage
theorem
RelEmbedding
.
one_def
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
1
=
RelEmbedding.refl
r
source
š coverage
theorem
RelEmbedding
.
mul_def
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
f
g
:
r
āŖr
r
)
:
f
*
g
=
g
.
trans
f
source
š coverage
@[simp]
theorem
RelEmbedding
.
coe_one
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
ā
1
=
id
source
š coverage
@[simp]
theorem
RelEmbedding
.
coe_mul
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
f
g
:
r
āŖr
r
)
:
ā(
f
*
g
)
=
ā
f
ā
ā
g
source
š coverage
theorem
RelEmbedding
.
one_apply
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
a
:
α
)
:
1
a
=
a
source
š coverage
theorem
RelEmbedding
.
mul_apply
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
eā
eā
:
r
āŖr
r
)
(
x
:
α
)
:
(
eā
*
eā
)
x
=
eā
(
eā
x
)
source
šø coverage
instance
RelIso
.
instGroup
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
Group
(
r
ār
r
)
Equations
source
š coverage
theorem
RelIso
.
one_def
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
1
=
RelIso.refl
r
source
š coverage
theorem
RelIso
.
mul_def
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
f
g
:
r
ār
r
)
:
f
*
g
=
g
.
trans
f
source
š coverage
@[simp]
theorem
RelIso
.
coe_one
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
:
ā
1
=
id
source
š coverage
@[simp]
theorem
RelIso
.
coe_mul
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
eā
eā
:
r
ār
r
)
:
ā(
eā
*
eā
)
=
ā
eā
ā
ā
eā
source
š coverage
theorem
RelIso
.
one_apply
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
x
:
α
)
:
1
x
=
x
source
š coverage
theorem
RelIso
.
mul_apply
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
eā
eā
:
r
ār
r
)
(
x
:
α
)
:
(
eā
*
eā
)
x
=
eā
(
eā
x
)
source
š coverage
@[simp]
theorem
RelIso
.
inv_apply_self
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
e
:
r
ār
r
)
(
x
:
α
)
:
e
ā»Ā¹
(
e
x
)
=
x
source
š coverage
@[simp]
theorem
RelIso
.
apply_inv_self
{
α
:
Type
u_1}
{
r
:
α
ā
α
ā
Prop
}
(
e
:
r
ār
r
)
(
x
:
α
)
:
e
(
e
ā»Ā¹
x
)
=
x