Documentation
Mathlib
.
Algebra
.
Order
.
Hom
.
Units
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Units.Equiv
Mathlib.Algebra.Order.Hom.Monoid
Mathlib.Algebra.Order.Monoid.Units
Imported by
OrderMonoidIso
.
unitsCongr
OrderMonoidIso
.
val_unitsCongr_symm_apply
OrderMonoidIso
.
val_unitsCongr_apply
OrderMonoidIso
.
val_inv_unitsCongr_symm_apply
OrderMonoidIso
.
val_inv_unitsCongr_apply
Isomorphism of ordered monoids descends to units
#
source
🔸 coverage
def
OrderMonoidIso
.
unitsCongr
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Preorder
α
]
[
Monoid
α
]
[
Preorder
β
]
[
Monoid
β
]
(
e
:
α
≃*o
β
)
:
α
ˣ
≃*o
β
ˣ
An isomorphism of ordered monoids descends to their units.
Equations
Instances For
source
📐 coverage
@[simp]
theorem
OrderMonoidIso
.
val_unitsCongr_symm_apply
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Preorder
α
]
[
Monoid
α
]
[
Preorder
β
]
[
Monoid
β
]
(
e
:
α
≃*o
β
)
(
a
:
β
ˣ
)
:
↑
(
e
.
unitsCongr
.
symm
a
)
=
(↑
e
)
.
symm
↑
a
source
📐 coverage
@[simp]
theorem
OrderMonoidIso
.
val_unitsCongr_apply
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Preorder
α
]
[
Monoid
α
]
[
Preorder
β
]
[
Monoid
β
]
(
e
:
α
≃*o
β
)
(
a✝
:
α
ˣ
)
:
↑
(
e
.
unitsCongr
a✝
)
=
e
↑
a✝
source
📐 coverage
@[simp]
theorem
OrderMonoidIso
.
val_inv_unitsCongr_symm_apply
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Preorder
α
]
[
Monoid
α
]
[
Preorder
β
]
[
Monoid
β
]
(
e
:
α
≃*o
β
)
(
a
:
β
ˣ
)
:
↑
(
e
.
unitsCongr
.
symm
a
)
⁻¹
=
(↑
e
)
.
symm
↑
a
⁻¹
source
📐 coverage
@[simp]
theorem
OrderMonoidIso
.
val_inv_unitsCongr_apply
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Preorder
α
]
[
Monoid
α
]
[
Preorder
β
]
[
Monoid
β
]
(
e
:
α
≃*o
β
)
(
a✝
:
α
ˣ
)
:
↑
(
e
.
unitsCongr
a✝
)
⁻¹
=
e
↑
a✝
⁻¹