Documentation

Mathlib.Algebra.Order.Module.Basic

Further lemmas about monotonicity of scalar multiplication #

theorem inf_eq_half_smul_add_sub_abs_sub (R : Type u_2) {M : Type u_3} [Semiring R] [Invertible 2] [Lattice M] [AddCommGroup M] [Module R M] [IsOrderedAddMonoid M] (x y : M) :
x โŠ“ y = โ…Ÿ2 โ€ข (x + y - |y - x|)
theorem sup_eq_half_smul_add_add_abs_sub (R : Type u_2) {M : Type u_3} [Semiring R] [Invertible 2] [Lattice M] [AddCommGroup M] [Module R M] [IsOrderedAddMonoid M] (x y : M) :
x โŠ” y = โ…Ÿ2 โ€ข (x + y + |y - x|)
@[simp]
theorem abs_smul {R : Type u_2} {M : Type u_3} [Ring R] [LinearOrder R] [IsOrderedRing R] [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] [Module R M] [PosSMulMono R M] (a : R) (b : M) :
theorem inf_eq_half_smul_add_sub_abs_sub' (๐•œ : Type u_1) {M : Type u_3} [DivisionSemiring ๐•œ] [NeZero 2] [Lattice M] [AddCommGroup M] [Module ๐•œ M] [IsOrderedAddMonoid M] (x y : M) :
x โŠ“ y = 2โปยน โ€ข (x + y - |y - x|)
theorem sup_eq_half_smul_add_add_abs_sub' (๐•œ : Type u_1) {M : Type u_3} [DivisionSemiring ๐•œ] [NeZero 2] [Lattice M] [AddCommGroup M] [Module ๐•œ M] [IsOrderedAddMonoid M] (x y : M) :
x โŠ” y = 2โปยน โ€ข (x + y + |y - x|)