Documentation

Mathlib.Algebra.Order.Module.OrderedSMul

Ordered scalar product #

In this file we define

Implementation notes #

TODO #

This file is now mostly useless. We should try deleting OrderedSMul

References #

Tags #

ordered module, ordered scalar, ordered smul, ordered action, ordered vector space

@[deprecated IsStrictOrderedModule (since := "2025-08-25")]
class OrderedSMul (R : Type u_1) (M : Type u_2) [Semiring R] [PartialOrder R] [AddCommMonoid M] [PartialOrder M] [SMulWithZero R M] :

The ordered scalar product property is when an ordered additive commutative monoid with a partial order has a scalar multiplication which is compatible with the order. Note that this is different from IsOrderedSMul, which uses โ‰ค, has no semiring assumption, and has no positivity constraint on the defining conditions.

  • smul_lt_smul_of_pos {a b : M} {c : R} : a < b โ†’ 0 < c โ†’ c โ€ข a < c โ€ข b

    Scalar multiplication by positive elements preserves the order.

  • lt_of_smul_lt_smul_of_pos {a b : M} {c : R} : c โ€ข a < c โ€ข b โ†’ 0 < c โ†’ a < b

    If c โ€ข a < c โ€ข b for some positive c, then a < b.

Instances
    theorem OrderedSMul.mk'' {๐•œ : Type u_2} {M : Type u_4} [Semiring ๐•œ] [PartialOrder ๐•œ] [AddCommMonoid M] [LinearOrder M] [SMulWithZero ๐•œ M] (h : โˆ€ โฆƒc : ๐•œโฆ„, 0 < c โ†’ StrictMono fun (a : M) => c โ€ข a) :
    OrderedSMul ๐•œ M

    To prove that a linear ordered monoid is an ordered module, it suffices to verify only the first axiom of OrderedSMul.

    theorem OrderedSMul.mk' {๐•œ : Type u_2} {M : Type u_4} [Semifield ๐•œ] [PartialOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [PosMulReflectLT ๐•œ] [AddCommMonoid M] [PartialOrder M] [MulActionWithZero ๐•œ M] (h : โˆ€ โฆƒa b : Mโฆ„ โฆƒc : ๐•œโฆ„, a < b โ†’ 0 < c โ†’ c โ€ข a โ‰ค c โ€ข b) :
    OrderedSMul ๐•œ M

    To prove that a vector space over a linear ordered field is ordered, it suffices to verify only the first axiom of OrderedSMul.

    instance instOrderedSMulProd {๐•œ : Type u_2} {M : Type u_4} {N : Type u_5} [Semifield ๐•œ] [PartialOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [PosMulReflectLT ๐•œ] [AddCommMonoid M] [PartialOrder M] [AddCommMonoid N] [PartialOrder N] [MulActionWithZero ๐•œ M] [MulActionWithZero ๐•œ N] [OrderedSMul ๐•œ M] [OrderedSMul ๐•œ N] :
    OrderedSMul ๐•œ (M ร— N)
    instance Pi.orderedSMul {ฮน : Type u_1} {๐•œ : Type u_2} [Semifield ๐•œ] [PartialOrder ๐•œ] [IsStrictOrderedRing ๐•œ] [PosMulReflectLT ๐•œ] {M : ฮน โ†’ Type u_6} [(i : ฮน) โ†’ AddCommMonoid (M i)] [(i : ฮน) โ†’ PartialOrder (M i)] [(i : ฮน) โ†’ MulActionWithZero ๐•œ (M i)] [โˆ€ (i : ฮน), OrderedSMul ๐•œ (M i)] :
    OrderedSMul ๐•œ ((i : ฮน) โ†’ M i)