Documentation

Mathlib.Algebra.Order.Positive.Field

Algebraic structures on the set of positive numbers #

In this file we prove that the set of positive elements of a linear ordered field is a linear ordered commutative group.

@[simp]
theorem Positive.coe_inv {K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (x : { x : K // 0 < x }) :
โ†‘xโปยน = (โ†‘x)โปยน
@[simp]
theorem Positive.coe_zpow {K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] (x : { x : K // 0 < x }) (n : โ„ค) :
โ†‘(x ^ n) = โ†‘x ^ n