Documentation

Mathlib.Algebra.Order.Ring.Ordering.Defs

Ring orderings #

Let R be a commutative ring. A preordering on R is a subset closed under addition and multiplication that contains all squares, but not -1.

The support of a preordering P is the set of elements x such that both x and -x lie in P.

An ordering O on R is a preordering such that

  1. O contains either x or -x for each x in R and
  2. the support of O is a prime ideal.

We define preorderings, supports and orderings.

A ring preordering can intuitively be viewed as a set of "non-negative" ring elements. Indeed, an ordering O with support p induces a linear order on Rβ§Έp making it into an ordered ring, and vice versa.

References #

Preorderings #

structure RingPreordering (R : Type u_1) [CommRing R] extends Subsemiring R :
Type u_1

A preordering on a ring R is a subsemiring of R containing all squares, but not containing -1.

Instances For
    theorem RingPreordering.ext_iff {R : Type u_1} {inst✝ : CommRing R} {x y : RingPreordering R} :
    x = y ↔ (↑x).carrier = (↑y).carrier
    theorem RingPreordering.ext {R : Type u_1} {inst✝ : CommRing R} {x y : RingPreordering R} (carrier : (↑x).carrier = (↑y).carrier) :
    x = y
    @[simp]
    theorem RingPreordering.mul_self_mem {R : Type u_1} [CommRing R] (P : RingPreordering R) (x : R) :
    x * x ∈ P
    @[simp]
    theorem RingPreordering.pow_two_mem {R : Type u_1} [CommRing R] (P : RingPreordering R) (x : R) :
    x ^ 2 ∈ P
    @[simp]
    theorem RingPreordering.toSubsemiring_inj {R : Type u_1} [CommRing R] {P₁ Pβ‚‚ : RingPreordering R} :
    ↑P₁ = ↑Pβ‚‚ ↔ P₁ = Pβ‚‚
    @[simp]
    theorem RingPreordering.mem_toSubsemiring {R : Type u_1} [CommRing R] {P : RingPreordering R} {x : R} :
    x ∈ ↑P ↔ x ∈ P
    @[simp]
    theorem RingPreordering.coe_toSubsemiring {R : Type u_1} [CommRing R] (P : RingPreordering R) :
    ↑↑P = ↑P
    @[simp]
    theorem RingPreordering.mem_mk {R : Type u_1} [CommRing R] {toSubsemiring : Subsemiring R} (mem_of_isSquare : βˆ€ {x : R}, IsSquare x β†’ x ∈ toSubsemiring.carrier) (neg_one_notMem : -1 βˆ‰ toSubsemiring.carrier) {x : R} :
    x ∈ { toSubsemiring := toSubsemiring, mem_of_isSquare' := mem_of_isSquare, neg_one_notMem' := neg_one_notMem } ↔ x ∈ toSubsemiring
    @[simp]
    theorem RingPreordering.coe_set_mk {R : Type u_1} [CommRing R] (toSubsemiring : Subsemiring R) (mem_of_isSquare : βˆ€ {x : R}, IsSquare x β†’ x ∈ toSubsemiring.carrier) (neg_one_notMem : -1 βˆ‰ toSubsemiring.carrier) :
    ↑{ toSubsemiring := toSubsemiring, mem_of_isSquare' := mem_of_isSquare, neg_one_notMem' := neg_one_notMem } = ↑toSubsemiring
    def RingPreordering.copy {R : Type u_1} [CommRing R] (P : RingPreordering R) (S : Set R) (hS : S = ↑P) :

    Copy of a preordering with a new carrier equal to the old one. Useful to fix definitional equalities.

    Equations
      Instances For
        @[simp]
        theorem RingPreordering.coe_copy {R : Type u_1} [CommRing R] (P : RingPreordering R) (S : Set R) (hS : S = ↑P) :
        ↑(P.copy S hS) = S
        @[simp]
        theorem RingPreordering.mem_copy {R : Type u_1} [CommRing R] (P : RingPreordering R) (S : Set R) (hS : S = ↑P) {x : R} :
        x ∈ P.copy S hS ↔ x ∈ S
        theorem RingPreordering.copy_eq {R : Type u_1} [CommRing R] (P : RingPreordering R) (S : Set R) (hS : S = ↑P) :
        ↑(P.copy S hS) = S

        Support #

        The support of a ring preordering P in a commutative ring R is the set of elements x in R such that both x and -x lie in P.

        Equations
          Instances For

            Typeclass to track whether the support of a preordering forms an ideal.

            Instances
              theorem RingPreordering.hasIdealSupport_iff {R : Type u_1} [CommRing R] {P : RingPreordering R} :
              P.HasIdealSupport ↔ βˆ€ (x a : R), a ∈ P β†’ -a ∈ P β†’ x * a ∈ P ∧ -(x * a) ∈ P

              The support of a ring preordering P in a commutative ring R is the set of elements x in R such that both x and -x lie in P.

              Equations
                Instances For

                  An ordering O on a ring R is a preordering such that

                  1. O contains either x or -x for each x in R and
                  2. the support of O is a prime ideal.
                  Instances