Documentation

Mathlib.Algebra.Polynomial.GroupRingAction

Group action on rings applied to polynomials #

This file contains instances and definitions relating MulSemiringAction to Polynomial.

noncomputable instance Polynomial.instMulSemiringAction (M : Type u_1) [Monoid M] (R : Type u_2) [Semiring R] [MulSemiringAction M R] :
Equations
    @[simp]
    theorem Polynomial.smul_X {M : Type u_1} [Monoid M] {R : Type u_2} [Semiring R] [MulSemiringAction M R] (m : M) :
    theorem Polynomial.smul_eval_smul {M : Type u_1} [Monoid M] (S : Type u_3) [CommSemiring S] [MulSemiringAction M S] (m : M) (f : Polynomial S) (x : S) :
    eval (m โ€ข x) (m โ€ข f) = m โ€ข eval x f
    theorem Polynomial.eval_smul' (S : Type u_3) [CommSemiring S] (G : Type u_4) [Group G] [MulSemiringAction G S] (g : G) (f : Polynomial S) (x : S) :
    theorem Polynomial.smul_eval (S : Type u_3) [CommSemiring S] (G : Type u_4) [Group G] [MulSemiringAction G S] (g : G) (f : Polynomial S) (x : S) :
    noncomputable def prodXSubSMul (G : Type u_2) [Group G] [Fintype G] (R : Type u_3) [CommRing R] [MulSemiringAction G R] (x : R) :

    the product of (X - g โ€ข x) over distinct g โ€ข x.

    Equations
      Instances For
        theorem prodXSubSMul.monic (G : Type u_2) [Group G] [Fintype G] (R : Type u_3) [CommRing R] [MulSemiringAction G R] (x : R) :
        theorem prodXSubSMul.eval (G : Type u_2) [Group G] [Fintype G] (R : Type u_3) [CommRing R] [MulSemiringAction G R] (x : R) :
        theorem prodXSubSMul.smul (G : Type u_2) [Group G] [Fintype G] (R : Type u_3) [CommRing R] [MulSemiringAction G R] (x : R) (g : G) :
        theorem prodXSubSMul.coeff (G : Type u_2) [Group G] [Fintype G] (R : Type u_3) [CommRing R] [MulSemiringAction G R] (x : R) (g : G) (n : โ„•) :
        noncomputable def MulSemiringActionHom.polynomial {M : Type u_1} [Monoid M] {P : Type u_2} [CommSemiring P] [MulSemiringAction M P] {Q : Type u_3} [CommSemiring Q] [MulSemiringAction M Q] (g : P โ†’+*[M] Q) :

        An equivariant map induces an equivariant map on polynomials.

        Equations
          Instances For
            @[simp]
            theorem MulSemiringActionHom.coe_polynomial {M : Type u_1} [Monoid M] {P : Type u_2} [CommSemiring P] [MulSemiringAction M P] {Q : Type u_3} [CommSemiring Q] [MulSemiringAction M Q] (g : P โ†’+*[M] Q) :
            โ‡‘g.polynomial = Polynomial.map โ†‘g