Results about IsRegular and MulOpposite #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
IsLeftRegular.op
{R : Type u_1}
[Mul R]
{a : R}
:
IsRightRegular a โ IsLeftRegular (MulOpposite.op a)
Alias of the reverse direction of isLeftRegular_op.
theorem
IsAddLeftRegular.op
{R : Type u_1}
[Add R]
{a : R}
:
IsAddRightRegular a โ IsAddLeftRegular (AddOpposite.op a)
theorem
IsRightRegular.op
{R : Type u_1}
[Mul R]
{a : R}
:
IsLeftRegular a โ IsRightRegular (MulOpposite.op a)
Alias of the reverse direction of isRightRegular_op.
theorem
IsAddRightRegular.op
{R : Type u_1}
[Add R]
{a : R}
:
IsAddLeftRegular a โ IsAddRightRegular (AddOpposite.op a)
Alias of the reverse direction of isRegular_op.
theorem
IsAddRegular.op
{R : Type u_1}
[Add R]
{a : R}
:
IsAddRegular a โ IsAddRegular (AddOpposite.op a)
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
IsLeftRegular.unop
{R : Type u_1}
[Mul R]
{a : Rแตแตแต}
:
IsRightRegular a โ IsLeftRegular (MulOpposite.unop a)
Alias of the reverse direction of isLeftRegular_unop.
theorem
IsRightRegular.unop
{R : Type u_1}
[Mul R]
{a : Rแตแตแต}
:
IsLeftRegular a โ IsRightRegular (MulOpposite.unop a)
Alias of the reverse direction of isRightRegular_unop.
theorem
IsRegular.unop
{R : Type u_1}
[Mul R]
{a : Rแตแตแต}
:
IsRegular a โ IsRegular (MulOpposite.unop a)
Alias of the reverse direction of isRegular_unop.
theorem
IsAddRegular.unop
{R : Type u_1}
[Add R]
{a : Rแตแตแต}
:
IsAddRegular a โ IsAddRegular (AddOpposite.unop a)