Documentation

Mathlib.Algebra.Ring.Subring.IntPolynomial

Polynomials over subrings. #

Given a field K with a subring R, in this file we construct a map from polynomials in K[X] with coefficients in R to R[X]. We provide several lemmas to deal with coefficients, degree, and evaluation of Polynomial.int. This is useful when dealing with integral elements in an extension of fields.

Main Definitions #

def Polynomial.int {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : βˆ€ (n : β„•), P.coeff n ∈ R) :
Polynomial β†₯R

Given a polynomial in K[X] such that all coefficients belong to the subring R, Polynomial.int is the corresponding polynomial in R[X].

Equations
    Instances For
      @[simp]
      theorem Polynomial.int_coeff_eq {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : βˆ€ (n : β„•), P.coeff n ∈ R) (n : β„•) :
      ↑((int R P hP).coeff n) = P.coeff n
      @[simp]
      theorem Polynomial.int_leadingCoeff_eq {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : βˆ€ (n : β„•), P.coeff n ∈ R) :
      ↑(int R P hP).leadingCoeff = P.leadingCoeff
      @[simp]
      theorem Polynomial.int_monic_iff {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : βˆ€ (n : β„•), P.coeff n ∈ R) :
      (int R P hP).Monic ↔ P.Monic
      @[simp]
      theorem Polynomial.int_natDegree {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : βˆ€ (n : β„•), P.coeff n ∈ R) :
      @[simp]
      theorem Polynomial.int_evalβ‚‚_eq {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : βˆ€ (n : β„•), P.coeff n ∈ R) {L : Type u_2} [Field L] [Algebra K L] (x : L) :
      evalβ‚‚ (algebraMap (β†₯R) L) x (int R P hP) = (aeval x) P