Documentation

Mathlib.Algebra.Star.Subsemiring

Star subrings #

A *-subring is a subring of a *-ring which is closed under *.

structure StarSubsemiring (R : Type v) [NonAssocSemiring R] [Star R] extends Subsemiring R :

A (unital) star subsemiring is a non-associative ring which is closed under the star operation.

Instances For

    The actual StarSubsemiring obtained from an element of a StarSubsemiringClass.

    Equations
      Instances For
        @[simp]
        theorem StarSubsemiring.coe_ofClass {S : Type u_1} {R : Type u_2} [NonAssocSemiring R] [SetLike S R] [StarRing R] [SubsemiringClass S R] [StarMemClass S R] (s : S) :
        ↑(ofClass s) = ↑s
        @[instance 100]
        instance StarSubsemiring.instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallStar {R : Type v} [NonAssocSemiring R] [StarRing R] :
        CanLift (Set R) (StarSubsemiring R) SetLike.coe fun (s : Set R) => 0 ∈ s ∧ (āˆ€ {x y : R}, x ∈ s → y ∈ s → x + y ∈ s) ∧ 1 ∈ s ∧ (āˆ€ {x y : R}, x ∈ s → y ∈ s → x * y ∈ s) ∧ āˆ€ {x : R}, x ∈ s → star x ∈ s
        theorem StarSubsemiring.ext {R : Type v} [NonAssocSemiring R] [StarRing R] {S T : StarSubsemiring R} (h : āˆ€ (x : R), x ∈ S ↔ x ∈ T) :
        S = T
        @[simp]
        theorem StarSubsemiring.coe_mk {R : Type v} [NonAssocSemiring R] [StarRing R] (S : Subsemiring R) (h : āˆ€ {a : R}, a ∈ S.carrier → star a ∈ S.carrier) :
        ↑{ toSubsemiring := S, star_mem' := h } = ↑S
        def StarSubsemiring.copy {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = ↑S) :

        Copy of a non-unital star subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

        Equations
          Instances For
            @[simp]
            theorem StarSubsemiring.coe_copy {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = ↑S) :
            ↑(S.copy s hs) = s
            theorem StarSubsemiring.copy_eq {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = ↑S) :
            S.copy s hs = S

            The center of a semiring R is the set of elements that commute and associate with everything in R

            Equations
              Instances For

                The center of magma A is the set of elements that commute and associate with everything in A, here realized as a SubStarSemigroup.

                Equations
                  Instances For