Vertex operators #
In this file we introduce vertex operators as linear maps to Laurent series.
Definitions #
VertexOperatoris anR-linear map from anR-moduleVtoLaurentSeries V.VertexOperator.ncoeffis the coefficient of a vertex operator under normalized indexing.
TODO #
HasseDerivative: A divided-power derivative.Locality: A weak form of commutativity.Residue products: A family of products onVertexOperator R Vparametrized by integers.
References #
- [G. Mason, Vertex rings and Pierce bundles][mason2017]
- [A. Matsuo, K. Nagatomo, On axioms for a vertex algebra and locality of quantum fields][matsuo1997]
@[reducible, inline]
abbrev
VertexOperator
(R : Type u_3)
(V : Type u_4)
[CommRing R]
[AddCommGroup V]
[Module R V]
:
Type u_4
A vertex operator over a commutative ring R is an R-linear map from an R-module V to
Laurent series with coefficients in V. We write this as a specialization of the heterogeneous
case.
Equations
Instances For
theorem
VertexOperator.ext
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A B : VertexOperator R V)
(h : ∀ (v : V), A v = B v)
:
theorem
VertexOperator.ext_iff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
{A B : VertexOperator R V}
:
def
VertexOperator.ncoeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
:
The coefficient of a vertex operator under normalized indexing.
Equations
Instances For
theorem
VertexOperator.ncoeff_apply
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
:
In the literature, the nth normalized coefficient of a vertex operator A is written as
either Aₙ or A(n).
Equations
Instances For
@[simp]
theorem
VertexOperator.coeff_eq_ncoeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
:
@[deprecated map_add (since := "2025-08-30")]
theorem
VertexOperator.ncoeff_add
{M : Type u_4}
{N : Type u_5}
{F : Type u_9}
[Add M]
[Add N]
[FunLike F M N]
[AddHomClass F M N]
(f : F)
(x y : M)
:
Alias of map_add.
@[deprecated map_smul (since := "2025-08-30")]
theorem
VertexOperator.ncoeff_smul
{F : Type u_8}
{M : Type u_9}
{X : Type u_10}
{Y : Type u_11}
[SMul M X]
[SMul M Y]
[FunLike F X Y]
[MulActionHomClass F M X Y]
(f : F)
(c : M)
(x : X)
:
Alias of map_smul.
theorem
VertexOperator.ncoeff_eq_zero_of_lt_order
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
(x : V)
(h : -n - 1 < ((HahnModule.of R).symm (A x)).order)
:
theorem
VertexOperator.coeff_eq_zero_of_lt_order
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
(x : V)
(h : n < ((HahnModule.of R).symm (A x)).order)
:
noncomputable def
VertexOperator.of_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), BddBelow (Function.support fun (y : ℤ) => (f y) x))
:
VertexOperator R V
Given an endomorphism-valued function on integers satisfying a pointwise bounded-pole condition, we produce a vertex operator.
Equations
Instances For
@[simp]
theorem
VertexOperator.of_coeff_apply_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), BddBelow (Function.support fun (y : ℤ) => (f y) x))
(x : V)
(n : ℤ)
:
@[simp]
theorem
VertexOperator.ncoeff_of_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), BddBelow (Function.support fun (y : ℤ) => (f y) x))
(n : ℤ)
: