Documentation

Mathlib.Analysis.Calculus.InverseFunctionTheorem.ContDiff

Inverse function theorem, C^r case #

In this file we specialize the inverse function theorem to C^r-smooth functions.

def ContDiffAt.toOpenPartialHomeomorph {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] (f : EF) {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :

Given a ContDiff function over 𝕂 (which is or ) with an invertible derivative at a, returns an OpenPartialHomeomorph with to_fun = f and a ∈ source.

Equations
    Instances For
      @[deprecated ContDiffAt.toOpenPartialHomeomorph (since := "2025-08-29")]
      def ContDiffAt.toPartialHomeomorph {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] (f : EF) {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :

      Alias of ContDiffAt.toOpenPartialHomeomorph.


      Given a ContDiff function over 𝕂 (which is or ) with an invertible derivative at a, returns an OpenPartialHomeomorph with to_fun = f and a ∈ source.

      Equations
        Instances For
          @[simp]
          theorem ContDiffAt.toOpenPartialHomeomorph_coe {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
          (toOpenPartialHomeomorph f hf hf' hn) = f
          @[deprecated ContDiffAt.toOpenPartialHomeomorph_coe (since := "2025-08-29")]
          theorem ContDiffAt.toPartialHomeomorph_coe {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
          (toOpenPartialHomeomorph f hf hf' hn) = f

          Alias of ContDiffAt.toOpenPartialHomeomorph_coe.

          theorem ContDiffAt.mem_toOpenPartialHomeomorph_source {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
          @[deprecated ContDiffAt.mem_toOpenPartialHomeomorph_source (since := "2025-08-29")]
          theorem ContDiffAt.mem_toPartialHomeomorph_source {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :

          Alias of ContDiffAt.mem_toOpenPartialHomeomorph_source.

          theorem ContDiffAt.image_mem_toOpenPartialHomeomorph_target {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
          @[deprecated ContDiffAt.image_mem_toOpenPartialHomeomorph_target (since := "2025-08-29")]
          theorem ContDiffAt.image_mem_toPartialHomeomorph_target {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :

          Alias of ContDiffAt.image_mem_toOpenPartialHomeomorph_target.

          def ContDiffAt.localInverse {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
          FE

          Given a ContDiff function over 𝕂 (which is or ) with an invertible derivative at a, returns a function that is locally inverse to f.

          Equations
            Instances For
              theorem ContDiffAt.localInverse_apply_image {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
              hf.localInverse hf' hn (f a) = a
              theorem ContDiffAt.to_localInverse {𝕂 : Type u_1} [RCLike 𝕂] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕂 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕂 F] [CompleteSpace E] {f : EF} {f' : E ≃L[𝕂] F} {a : E} {n : WithTop ℕ∞} (hf : ContDiffAt 𝕂 n f a) (hf' : HasFDerivAt f (↑f') a) (hn : n 0) :
              ContDiffAt 𝕂 n (hf.localInverse hf' hn) (f a)

              Given a ContDiff function over 𝕂 (which is or ) with an invertible derivative at a, the inverse function (produced by ContDiff.toOpenPartialHomeomorph) is also ContDiff.