Documentation

Mathlib.Analysis.Complex.HasPrimitives

Primitives of Holomorphic Functions #

In this file, we give conditions under which holomorphic functions have primitives. The main goal is to prove that holomorphic functions on simply connected domains have primitives. As a first step, we prove that holomorphic functions on disks have primitives. The approach is based on Morera's theorem, that a continuous function (on a disk) whose integral round a rectangle vanishes on all rectangles contained in the disk has a primitive. (Coupled with the fact that holomorphic functions satisfy this property.) To prove Morera's theorem, we first define the Complex.wedgeIntegral, which is the integral of a function over a "wedge" (a horizontal segment followed by a vertical segment in the disk), and compute its derivative.

Main results #

TODO: Extend to holomorphic functions on simply connected domains.

def Complex.wedgeIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (z w : โ„‚) (f : โ„‚ โ†’ E) :
E

The (z, w)-wedge-integral of f, is the integral of f over two sides of the rectangle determined by z and w.

Equations
    Instances For
      theorem Complex.wedgeIntegral_add_wedgeIntegral_eq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (z w : โ„‚) (f : โ„‚ โ†’ E) :
      z.wedgeIntegral w f + w.wedgeIntegral z f = (((โˆซ (x : โ„) in z.re..w.re, f (โ†‘x + โ†‘z.im * I)) - โˆซ (x : โ„) in z.re..w.re, f (โ†‘x + โ†‘w.im * I)) + I โ€ข โˆซ (y : โ„) in z.im..w.im, f (โ†‘w.re + โ†‘y * I)) - I โ€ข โˆซ (y : โ„) in z.im..w.im, f (โ†‘z.re + โ†‘y * I)

      A function f IsConservativeOn in U if, for any rectangle contained in U the integral of f over the rectangle is zero.

      Equations
        Instances For
          def Complex.IsExactOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (f : โ„‚ โ†’ E) (U : Set โ„‚) :

          A function f IsExactOn in U if it is the complex derivative of a function on U.

          In complex variable theory, this is also referred to as "having a primitive".

          Equations
            Instances For

              If a function f IsConservativeOn on a disk of center c, then for points z in this disk, the wedge integral from c to z is additive under a detour through a nearby point w.

              theorem Complex.IsConservativeOn.hasDerivAt_wedgeIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {c : โ„‚} {r : โ„} {f : โ„‚ โ†’ E} [CompleteSpace E] (f_cont : ContinuousOn f (Metric.ball c r)) {z : โ„‚} (hz : z โˆˆ Metric.ball c r) (h : IsConservativeOn f (Metric.ball c r)) :
              HasDerivAt (fun (w : โ„‚) => c.wedgeIntegral w f) (f z) z

              The wedgeIntegral has derivative at z equal to f z.

              Morera's theorem for a disk On a disk, a continuous function whose integrals on rectangles vanish, has primitives.

              Morera's theorem for a disk On a disk, a holomorphic function has primitives.