Isometries of the Complex Plane #
The lemma linear_isometry_complex states the classification of isometries in the complex plane.
Specifically, isometries with rotations but without translation.
The proof involves:
- creating a linear isometry
gwith two fixed points,g(0) = 0,g(1) = 1 - applying
linear_isometry_complex_auxtogThe proof oflinear_isometry_complex_auxis separated in the following parts: - show that the real parts match up:
LinearIsometry.re_apply_eq_re - show that I maps to either I or -I
- every z is a linear combination of a + b * I
References #
An element of the unit circle defines a LinearIsometryEquiv from โ to itself, by
rotation.
Equations
Instances For
@[simp]
@[simp]
@[simp]
Takes an element of โ โโแตข[โ] โ and checks if it is a rotation, returns an element of the
unit circle.
Equations
Instances For
@[simp]
theorem
LinearIsometry.re_apply_eq_re_of_add_conj_eq
(f : โ โโแตข[โ] โ)
(hโ : โ (z : โ), z + (starRingEnd โ) z = f z + (starRingEnd โ) (f z))
(z : โ)
:
theorem
toMatrix_rotation
(a : Circle)
:
(LinearMap.toMatrix Complex.basisOneI Complex.basisOneI) โ(rotation a).toLinearEquiv = โ(Matrix.planeConformalMatrix (โa).re (โa).im โฏ)
The matrix representation of rotation a is equal to the conformal matrix
!![re a, -im a; im a, re a].
@[simp]
The determinant of rotation (as a linear map) is equal to 1.
@[simp]
The determinant of rotation (as a linear equiv) is equal to 1.