Documentation

Mathlib.Analysis.Complex.MeanValue

The Mean Value Property of Complex Differentiable Functions #

This file established the classic mean value properties of complex differentiable functions, computing the value of a function at the center of a circle as a circle average. It also provides generalized versions that computing the value of a function at arbitrary points of a disk as circle averages over suitable weighted functions.

Generalized Mean Value Properties #

For a complex differentiable function f, the theorems in this section compute values of f in the interior of a disk as circle averages of a weighted function.

theorem circleAverage_sub_sub_inv_smul_of_differentiable_on_off_countable {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [CompleteSpace E] {f : โ„‚ โ†’ E} {R : โ„} {c w : โ„‚} {s : Set โ„‚} (hs : s.Countable) (hโ‚f : ContinuousOn f (Metric.closedBall c |R|)) (hโ‚‚f : โˆ€ z โˆˆ Metric.ball c |R| \ s, DifferentiableAt โ„‚ f z) (hw : w โˆˆ Metric.ball c |R|) :
Real.circleAverage (fun (z : โ„‚) => ((z - c) / (z - w)) โ€ข f z) c R = f w

The Generalized Mean Value Property of complex differentiable functions: If f : โ„‚ โ†’ E is continuous on a closed disc of radius R and center c, and is complex differentiable at all but countably many points of its interior, then for every point w in the disk, the circle average circleAverage (fun z โ†ฆ ((z - c) * (z - w)โปยน) โ€ข f z) c R equals f w.

theorem DiffContOnCl.circleAverage_smul_div {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [CompleteSpace E] {f : โ„‚ โ†’ E} {R : โ„} {c w : โ„‚} (hf : DiffContOnCl โ„‚ f (Metric.ball c |R|)) (hw : w โˆˆ Metric.ball c |R|) :
Real.circleAverage (fun (z : โ„‚) => ((z - c) / (z - w)) โ€ข f z) c R = f w

The Generalized Mean Value Property of complex differentiable functions: If f : โ„‚ โ†’ E is complex differentiable at all points of a closed disc of radius R and center c, then for every point w in the disk, the circle average circleAverage (fun z โ†ฆ ((z - c) * (z - w)โปยน) โ€ข f z) c R equals f w.

@[deprecated DiffContOnCl.circleAverage_smul_div (since := "2026-02-11")]
theorem circleAverage_sub_sub_inv_smul_of_differentiable_on {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [CompleteSpace E] {f : โ„‚ โ†’ E} {R : โ„} {c w : โ„‚} (hf : DiffContOnCl โ„‚ f (Metric.ball c |R|)) (hw : w โˆˆ Metric.ball c |R|) :
Real.circleAverage (fun (z : โ„‚) => ((z - c) / (z - w)) โ€ข f z) c R = f w

Alias of DiffContOnCl.circleAverage_smul_div.


The Generalized Mean Value Property of complex differentiable functions: If f : โ„‚ โ†’ E is complex differentiable at all points of a closed disc of radius R and center c, then for every point w in the disk, the circle average circleAverage (fun z โ†ฆ ((z - c) * (z - w)โปยน) โ€ข f z) c R equals f w.

Classic Mean Value Properties #

For a complex differentiable function f, the theorems in this section compute value of f at the center of a circle as a circle average of the function. This specializes the generalized mean value properties discussed in the previous section.

theorem circleAverage_of_differentiable_on_off_countable {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [CompleteSpace E] {f : โ„‚ โ†’ E} {R : โ„} {c : โ„‚} {s : Set โ„‚} (hs : s.Countable) (hโ‚f : ContinuousOn f (Metric.closedBall c |R|)) (hโ‚‚f : โˆ€ z โˆˆ Metric.ball c |R| \ s, DifferentiableAt โ„‚ f z) :

The Mean Value Property of complex differentiable functions: If f : โ„‚ โ†’ E is continuous on a closed disc of radius R and center c, and is complex differentiable at all but countably many points of its interior, then the circle average circleAverage f c R equals f c.

The Mean Value Property of complex differentiable functions: If f : โ„‚ โ†’ E is complex differentiable at all points of a closed disc of radius R and center c, then the circle average circleAverage f c R equals f c.

@[deprecated DiffContOnCl.circleAverage (since := "2026-02-11")]

Alias of DiffContOnCl.circleAverage.


The Mean Value Property of complex differentiable functions: If f : โ„‚ โ†’ E is complex differentiable at all points of a closed disc of radius R and center c, then the circle average circleAverage f c R equals f c.