Documentation

Mathlib.Analysis.Convex.StrictCombination

Convex combinations in strictly convex sets and spaces. #

This file proves lemmas about convex combinations of points in strictly convex sets and strictly convex spaces.

theorem StrictConvex.centerMass_mem_interior {R : Type u_1} {V : Type u_2} {ι : Type u_4} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [TopologicalSpace V] [AddCommGroup V] [Module R V] {s : Set V} {t : Finset ι} {w : ι → R} {z : ι → V} (hs : StrictConvex R s) :
(āˆ€ i ∈ t, 0 ≤ w i) → āˆ€ (i j : ι), i ∈ t → j ∈ t → z i ≠ z j → w i ≠ 0 → w j ≠ 0 → (āˆ€ i ∈ t, z i ∈ s) → t.centerMass w z ∈ interior s
theorem StrictConvex.sum_mem_interior {R : Type u_1} {V : Type u_2} {ι : Type u_4} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [TopologicalSpace V] [AddCommGroup V] [Module R V] {s : Set V} {t : Finset ι} {w : ι → R} {z : ι → V} (hs : StrictConvex R s) (h0 : āˆ€ i ∈ t, 0 ≤ w i) (h1 : āˆ‘ i ∈ t, w i = 1) {i j : ι} (hi : i ∈ t) (hj : j ∈ t) (hij : z i ≠ z j) (hi0 : w i ≠ 0) (hj0 : w j ≠ 0) (hz : āˆ€ i ∈ t, z i ∈ s) :
āˆ‘ k ∈ t, w k • z k ∈ interior s
theorem centerMass_mem_ball_of_strictConvexSpace {V : Type u_2} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace ā„ V] [StrictConvexSpace ā„ V] {t : Finset ι} {w : ι → ā„} {p : V} {r : ā„} {z : ι → V} (h0 : āˆ€ i ∈ t, 0 ≤ w i) {i j : ι} (hi : i ∈ t) (hj : j ∈ t) (hij : z i ≠ z j) (hi0 : w i ≠ 0) (hj0 : w j ≠ 0) (hz : āˆ€ i ∈ t, z i ∈ Metric.closedBall p r) :
theorem sum_mem_ball_of_strictConvexSpace {V : Type u_2} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace ā„ V] [StrictConvexSpace ā„ V] {t : Finset ι} {w : ι → ā„} {p : V} {r : ā„} {z : ι → V} (h0 : āˆ€ i ∈ t, 0 ≤ w i) (h1 : āˆ‘ i ∈ t, w i = 1) {i j : ι} (hi : i ∈ t) (hj : j ∈ t) (hij : z i ≠ z j) (hi0 : w i ≠ 0) (hj0 : w j ≠ 0) (hz : āˆ€ i ∈ t, z i ∈ Metric.closedBall p r) :
āˆ‘ k ∈ t, w k • z k ∈ Metric.ball p r
theorem norm_sum_lt_of_strictConvexSpace {V : Type u_2} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace ā„ V] [StrictConvexSpace ā„ V] {t : Finset ι} {w : ι → ā„} {r : ā„} {z : ι → V} (h0 : āˆ€ i ∈ t, 0 ≤ w i) (h1 : āˆ‘ i ∈ t, w i = 1) {i j : ι} (hi : i ∈ t) (hj : j ∈ t) (hij : z i ≠ z j) (hi0 : w i ≠ 0) (hj0 : w j ≠ 0) (hz : āˆ€ i ∈ t, ‖z i‖ ≤ r) :
ā€–āˆ‘ k ∈ t, w k • z k‖ < r
theorem dist_affineCombination_lt_of_strictConvexSpace {V : Type u_2} {P : Type u_3} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace ā„ V] [StrictConvexSpace ā„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] {t : Finset ι} {w : ι → ā„} {pā‚€ : P} {r : ā„} {p : ι → P} (h0 : āˆ€ i ∈ t, 0 ≤ w i) (h1 : āˆ‘ i ∈ t, w i = 1) {i j : ι} (hi : i ∈ t) (hj : j ∈ t) (hij : p i ≠ p j) (hi0 : w i ≠ 0) (hj0 : w j ≠ 0) (hp : āˆ€ i ∈ t, dist (p i) pā‚€ ≤ r) :
theorem Affine.Simplex.dist_lt_of_mem_closedInterior_of_strictConvexSpace {V : Type u_2} {P : Type u_3} [NormedAddCommGroup V] [NormedSpace ā„ V] [StrictConvexSpace ā„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] {n : ā„•} (s : Simplex ā„ P n) {r : ā„} {pā‚€ p : P} (hp : p ∈ s.closedInterior) (hp' : āˆ€ (i : Fin (n + 1)), p ≠ s.points i) (hr : āˆ€ (i : Fin (n + 1)), dist (s.points i) pā‚€ ≤ r) :
dist p pā‚€ < r
theorem Affine.Simplex.dist_lt_of_mem_interior_of_strictConvexSpace {V : Type u_2} {P : Type u_3} [NormedAddCommGroup V] [NormedSpace ā„ V] [StrictConvexSpace ā„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] {n : ā„•} (s : Simplex ā„ P n) {r : ā„} {pā‚€ p : P} (hp : p ∈ s.interior) (hr : āˆ€ (i : Fin (n + 1)), dist (s.points i) pā‚€ ≤ r) :
dist p pā‚€ < r