Convex combinations in strictly convex sets and spaces. #
This file proves lemmas about convex combinations of points in strictly convex sets and strictly convex spaces.
theorem
StrictConvex.centerMass_mem_interior
{R : Type u_1}
{V : Type u_2}
{ι : Type u_4}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[TopologicalSpace V]
[AddCommGroup V]
[Module R V]
{s : Set V}
{t : Finset ι}
{w : ι ā R}
{z : ι ā V}
(hs : StrictConvex R s)
:
theorem
StrictConvex.sum_mem_interior
{R : Type u_1}
{V : Type u_2}
{ι : Type u_4}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[TopologicalSpace V]
[AddCommGroup V]
[Module R V]
{s : Set V}
{t : Finset ι}
{w : ι ā R}
{z : ι ā V}
(hs : StrictConvex R s)
(h0 : ā i ā t, 0 ⤠w i)
(h1 : ā i ā t, w i = 1)
{i j : ι}
(hi : i ā t)
(hj : j ā t)
(hij : z i ā z j)
(hi0 : w i ā 0)
(hj0 : w j ā 0)
(hz : ā i ā t, z i ā s)
:
theorem
centerMass_mem_ball_of_strictConvexSpace
{V : Type u_2}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ā V]
[StrictConvexSpace ā V]
{t : Finset ι}
{w : ι ā ā}
{p : V}
{r : ā}
{z : ι ā V}
(h0 : ā i ā t, 0 ⤠w i)
{i j : ι}
(hi : i ā t)
(hj : j ā t)
(hij : z i ā z j)
(hi0 : w i ā 0)
(hj0 : w j ā 0)
(hz : ā i ā t, z i ā Metric.closedBall p r)
:
theorem
sum_mem_ball_of_strictConvexSpace
{V : Type u_2}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ā V]
[StrictConvexSpace ā V]
{t : Finset ι}
{w : ι ā ā}
{p : V}
{r : ā}
{z : ι ā V}
(h0 : ā i ā t, 0 ⤠w i)
(h1 : ā i ā t, w i = 1)
{i j : ι}
(hi : i ā t)
(hj : j ā t)
(hij : z i ā z j)
(hi0 : w i ā 0)
(hj0 : w j ā 0)
(hz : ā i ā t, z i ā Metric.closedBall p r)
:
theorem
norm_sum_lt_of_strictConvexSpace
{V : Type u_2}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ā V]
[StrictConvexSpace ā V]
{t : Finset ι}
{w : ι ā ā}
{r : ā}
{z : ι ā V}
(h0 : ā i ā t, 0 ⤠w i)
(h1 : ā i ā t, w i = 1)
{i j : ι}
(hi : i ā t)
(hj : j ā t)
(hij : z i ā z j)
(hi0 : w i ā 0)
(hj0 : w j ā 0)
(hz : ā i ā t, āz iā ⤠r)
:
theorem
dist_affineCombination_lt_of_strictConvexSpace
{V : Type u_2}
{P : Type u_3}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ā V]
[StrictConvexSpace ā V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{t : Finset ι}
{w : ι ā ā}
{pā : P}
{r : ā}
{p : ι ā P}
(h0 : ā i ā t, 0 ⤠w i)
(h1 : ā i ā t, w i = 1)
{i j : ι}
(hi : i ā t)
(hj : j ā t)
(hij : p i ā p j)
(hi0 : w i ā 0)
(hj0 : w j ā 0)
(hp : ā i ā t, dist (p i) pā ⤠r)
:
theorem
Affine.Simplex.dist_lt_of_mem_closedInterior_of_strictConvexSpace
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[NormedSpace ā V]
[StrictConvexSpace ā V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{n : ā}
(s : Simplex ā P n)
{r : ā}
{pā p : P}
(hp : p ā s.closedInterior)
(hp' : ā (i : Fin (n + 1)), p ā s.points i)
(hr : ā (i : Fin (n + 1)), dist (s.points i) pā ⤠r)
:
theorem
Affine.Simplex.dist_lt_of_mem_interior_of_strictConvexSpace
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[NormedSpace ā V]
[StrictConvexSpace ā V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{n : ā}
(s : Simplex ā P n)
{r : ā}
{pā p : P}
(hp : p ā s.interior)
(hr : ā (i : Fin (n + 1)), dist (s.points i) pā ⤠r)
: