Documentation

Mathlib.Analysis.Convex.StrictConvexBetween

Betweenness in affine spaces for strictly convex spaces #

This file proves results about betweenness for points in an affine space for a strictly convex space.

theorem Sbtw.dist_lt_max_dist {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace โ„ V] [StrictConvexSpace โ„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) {pโ‚ pโ‚‚ pโ‚ƒ : P} (h : Sbtw โ„ pโ‚ pโ‚‚ pโ‚ƒ) :
dist pโ‚‚ p < max (dist pโ‚ p) (dist pโ‚ƒ p)
theorem Wbtw.dist_le_max_dist {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace โ„ V] [StrictConvexSpace โ„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] (p : P) {pโ‚ pโ‚‚ pโ‚ƒ : P} (h : Wbtw โ„ pโ‚ pโ‚‚ pโ‚ƒ) :
dist pโ‚‚ p โ‰ค max (dist pโ‚ p) (dist pโ‚ƒ p)
theorem Collinear.wbtw_of_dist_eq_of_dist_le {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace โ„ V] [StrictConvexSpace โ„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] {p pโ‚ pโ‚‚ pโ‚ƒ : P} {r : โ„} (h : Collinear โ„ {pโ‚, pโ‚‚, pโ‚ƒ}) (hpโ‚ : dist pโ‚ p = r) (hpโ‚‚ : dist pโ‚‚ p โ‰ค r) (hpโ‚ƒ : dist pโ‚ƒ p = r) (hpโ‚pโ‚ƒ : pโ‚ โ‰  pโ‚ƒ) :
Wbtw โ„ pโ‚ pโ‚‚ pโ‚ƒ

Given three collinear points, two (not equal) with distance r from p and one with distance at most r from p, the third point is weakly between the other two points.

theorem Collinear.sbtw_of_dist_eq_of_dist_lt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace โ„ V] [StrictConvexSpace โ„ V] [PseudoMetricSpace P] [NormedAddTorsor V P] {p pโ‚ pโ‚‚ pโ‚ƒ : P} {r : โ„} (h : Collinear โ„ {pโ‚, pโ‚‚, pโ‚ƒ}) (hpโ‚ : dist pโ‚ p = r) (hpโ‚‚ : dist pโ‚‚ p < r) (hpโ‚ƒ : dist pโ‚ƒ p = r) (hpโ‚pโ‚ƒ : pโ‚ โ‰  pโ‚ƒ) :
Sbtw โ„ pโ‚ pโ‚‚ pโ‚ƒ

Given three collinear points, two (not equal) with distance r from p and one with distance less than r from p, the third point is strictly between the other two points.

theorem dist_add_dist_eq_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace โ„ V] [StrictConvexSpace โ„ V] [MetricSpace P] [NormedAddTorsor V P] {a b c : P} :
dist a b + dist b c = dist a c โ†” Wbtw โ„ a b c

In a strictly convex space, the triangle inequality turns into an equality if and only if the middle point belongs to the segment joining two other points.

The strict triangle inequality.

theorem eq_lineMap_of_dist_eq_mul_of_dist_eq_mul {E : Type u_3} {PE : Type u_5} [NormedAddCommGroup E] [NormedSpace โ„ E] [StrictConvexSpace โ„ E] [MetricSpace PE] [NormedAddTorsor E PE] {r : โ„} {x y z : PE} (hxy : dist x y = r * dist x z) (hyz : dist y z = (1 - r) * dist x z) :
theorem eq_midpoint_of_dist_eq_half {E : Type u_3} {PE : Type u_5} [NormedAddCommGroup E] [NormedSpace โ„ E] [StrictConvexSpace โ„ E] [MetricSpace PE] [NormedAddTorsor E PE] {x y z : PE} (hx : dist x y = dist x z / 2) (hy : dist y z = dist x z / 2) :

An isometry of NormedAddTorsors for real normed spaces, strictly convex in the case of the codomain, is an affine isometry. Unlike Mazur-Ulam, this does not require the isometry to be surjective.

Equations
    Instances For