Inner product space on Hᵐᵒᵖ #
This file defines the inner product space structure on Hᵐᵒᵖ where we define
the inner product naturally. We also define OrthonormalBasis.mulOpposite.
The inner product of Hᵐᵒᵖ is given by ⟪x, y⟫ ↦ ⟪x.unop, y.unop⟫.
Equations
instance
MulOpposite.instInnerProductSpace
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
Equations
theorem
Module.Basis.mulOpposite_is_orthonormal_iff
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
{ι : Type u_3}
(b : Basis ι 𝕜 H)
:
noncomputable def
OrthonormalBasis.mulOpposite
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι : Type u_3}
{H : Type u_4}
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 H)
:
OrthonormalBasis ι 𝕜 Hᵐᵒᵖ
The multiplicative opposite of an orthonormal basis b, i.e., b i ↦ op (b i).
Equations
Instances For
@[simp]
theorem
OrthonormalBasis.toBasis_mulOpposite
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι : Type u_3}
{H : Type u_4}
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 H)
: