Documentation

Mathlib.Analysis.InnerProductSpace.ProdL2

inner product space structure on products of inner product spaces #

The norm on product of two inner product spaces is compatible with an inner product $$ \langle x, y\rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle. $$ This is recorded in this file as an inner product space instance on WithLp 2 (E × F).

noncomputable instance WithLp.instProdInnerProductSpace {𝕜 : Type u_1} {E : Type u_4} {F : Type u_5} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] :
InnerProductSpace 𝕜 (WithLp 2 (E × F))
Equations
    @[simp]
    theorem WithLp.prod_inner_apply {𝕜 : Type u_1} {E : Type u_4} {F : Type u_5} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] (x y : WithLp 2 (E × F)) :
    inner 𝕜 x y = inner 𝕜 x.ofLp.1 y.ofLp.1 + inner 𝕜 x.ofLp.2 y.ofLp.2
    def OrthonormalBasis.prod {𝕜 : Type u_1} {ι₁ : Type u_2} {ι₂ : Type u_3} {E : Type u_4} {F : Type u_5} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] [Fintype ι₁] [Fintype ι₂] (v : OrthonormalBasis ι₁ 𝕜 E) (w : OrthonormalBasis ι₂ 𝕜 F) :
    OrthonormalBasis (ι₁ ι₂) 𝕜 (WithLp 2 (E × F))

    The product of two orthonormal bases is a basis for the L2-product.

    Equations
      Instances For
        @[simp]
        theorem OrthonormalBasis.prod_apply {𝕜 : Type u_1} {ι₁ : Type u_2} {ι₂ : Type u_3} {E : Type u_4} {F : Type u_5} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] [Fintype ι₁] [Fintype ι₂] (v : OrthonormalBasis ι₁ 𝕜 E) (w : OrthonormalBasis ι₂ 𝕜 F) (i : ι₁ ι₂) :
        (v.prod w) i = Sum.elim (WithLp.toLp 2 (LinearMap.inl 𝕜 E F) v) (WithLp.toLp 2 (LinearMap.inr 𝕜 E F) w) i
        def Submodule.orthogonalDecomposition {𝕜 : Type u_1} {E : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (K : Submodule 𝕜 E) [K.HasOrthogonalProjection] :
        E ≃ₗᵢ[𝕜] WithLp 2 (K × K)

        If a subspace K of an inner product space E admits an orthogonal projection, then E is isometrically isomorphic to the product of K and Kᗮ.

        Equations
          Instances For
            @[simp]
            theorem Submodule.orthogonalDecomposition_symm_apply {𝕜 : Type u_1} {E : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (K : Submodule 𝕜 E) [K.HasOrthogonalProjection] (a✝ : WithLp 2 (K × K)) :
            K.orthogonalDecomposition.symm a✝ = a✝.fst + a✝.snd