Documentation

Mathlib.Analysis.Normed.Field.Basic

Normed division rings and fields #

In this file we define normed fields, and (more generally) normed division rings. We also prove some theorems about these definitions.

Some useful results that relate the topology of the normed field to the discrete topology include:

Methods for constructing a normed field instance from a given real absolute value on a field are given in:

class NormedDivisionRing (Ξ± : Type u_5) extends Norm Ξ±, DivisionRing Ξ±, MetricSpace Ξ± :
Type u_5

A normed division ring is a division ring endowed with a seminorm which satisfies the equality β€–x yβ€– = β€–xβ€– β€–yβ€–.

Instances
    @[instance 100]
    instance NormedDivisionRing.toNormedRing {Ξ± : Type u_2} [Ξ² : NormedDivisionRing Ξ±] :

    A normed division ring is a normed ring.

    Equations
      @[instance 100]

      The norm on a normed division ring is strictly multiplicative.

      @[simp]
      theorem norm_div {Ξ± : Type u_2} [NormedDivisionRing Ξ±] (a b : Ξ±) :
      @[simp]
      theorem norm_zpow {Ξ± : Type u_2} [NormedDivisionRing Ξ±] (a : Ξ±) (n : β„€) :
      @[simp]
      theorem nnnorm_zpow {Ξ± : Type u_2} [NormedDivisionRing Ξ±] (a : Ξ±) (n : β„€) :
      theorem dist_inv_invβ‚€ {Ξ± : Type u_2} [NormedDivisionRing Ξ±] {z w : Ξ±} (hz : z β‰  0) (hw : w β‰  0) :
      class NormedField (Ξ± : Type u_5) extends Norm Ξ±, Field Ξ±, MetricSpace Ξ± :
      Type u_5

      A normed field is a field with a norm satisfying β€–x yβ€– = β€–xβ€– β€–yβ€–.

      Instances
        class NontriviallyNormedField (Ξ± : Type u_5) extends NormedField Ξ± :
        Type u_5

        A nontrivially normed field is a normed field in which there is an element of norm different from 0 and 1. This makes it possible to bring any element arbitrarily close to 0 by multiplication by the powers of any element, and thus to relate algebra and topology.

        Instances
          class DenselyNormedField (Ξ± : Type u_5) extends NormedField Ξ± :
          Type u_5

          A densely normed field is a normed field for which the image of the norm is dense in ℝβ‰₯0, which means it is also nontrivially normed. However, not all nontrivially normed fields are densely normed; in particular, the Padics exhibit this fact.

          Instances
            @[instance 100]

            A densely normed field is always a nontrivially normed field. See note [lower instance priority].

            Equations
              @[instance 100]
              Equations
                @[instance 100]
                instance NormedField.toNormedCommRing {Ξ± : Type u_2} [NormedField Ξ±] :
                Equations
                  theorem NormedField.exists_lt_norm (Ξ± : Type u_2) [NontriviallyNormedField Ξ±] (r : ℝ) :
                  βˆƒ (x : Ξ±), r < β€–xβ€–
                  theorem NormedField.exists_norm_lt (Ξ± : Type u_2) [NontriviallyNormedField Ξ±] {r : ℝ} (hr : 0 < r) :
                  βˆƒ (x : Ξ±), 0 < β€–xβ€– ∧ β€–xβ€– < r
                  theorem NormedField.exists_enorm_lt (Ξ± : Type u_2) [NontriviallyNormedField Ξ±] {r : ENNReal} (hr : 0 < r) :

                  TODO: merge with _root_.exists_enorm_lt.

                  theorem NormedField.exists_lt_norm_lt (Ξ± : Type u_2) [DenselyNormedField Ξ±] {r₁ rβ‚‚ : ℝ} (hβ‚€ : 0 ≀ r₁) (h : r₁ < rβ‚‚) :
                  βˆƒ (x : Ξ±), r₁ < β€–xβ€– ∧ β€–xβ€– < rβ‚‚
                  theorem NormedField.exists_lt_nnnorm_lt (Ξ± : Type u_2) [DenselyNormedField Ξ±] {r₁ rβ‚‚ : NNReal} (h : r₁ < rβ‚‚) :
                  βˆƒ (x : Ξ±), r₁ < β€–xβ€–β‚Š ∧ β€–xβ€–β‚Š < rβ‚‚
                  def NontriviallyNormedField.ofNormNeOne {π•œ : Type u_5} [h' : NormedField π•œ] (h : βˆƒ (x : π•œ), x β‰  0 ∧ β€–xβ€– β‰  1) :

                  A normed field is nontrivially normed provided that the norm of some nonzero element is not one.

                  Equations
                    Instances For

                      Induced normed structures #

                      @[reducible, inline]
                      abbrev NormedDivisionRing.induced {F : Type u_5} (R : Type u_6) (S : Type u_7) [FunLike F R S] [DivisionRing R] [NormedDivisionRing S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective ⇑f) :

                      An injective non-unital ring homomorphism from a DivisionRing to a NormedRing induces a NormedDivisionRing structure on the domain.

                      See note [reducible non-instances]

                      Equations
                        Instances For
                          @[reducible, inline]
                          abbrev NormedField.induced {F : Type u_5} (R : Type u_6) (S : Type u_7) [FunLike F R S] [Field R] [NormedField S] [NonUnitalRingHomClass F R S] (f : F) (hf : Function.Injective ⇑f) :

                          An injective non-unital ring homomorphism from a Field to a NormedRing induces a NormedField structure on the domain.

                          See note [reducible non-instances]

                          Equations
                            Instances For
                              instance SubfieldClass.toNormedField {S : Type u_5} {F : Type u_6} [SetLike S F] [NormedField F] [SubfieldClass S F] (s : S) :
                              NormedField β†₯s

                              If s is a subfield of a normed field F, then s is equipped with an induced normed field structure.

                              Equations
                                noncomputable def AbsoluteValue.toNormedField {K : Type u_5} [Field K] (v : AbsoluteValue K ℝ) :

                                A real absolute value on a field determines a NormedField structure.

                                Equations
                                  Instances For