Documentation

Mathlib.Analysis.Normed.Group.Continuity

Continuity of the norm on (semi)normed groups #

Tags #

normed group

theorem Continuous.enorm {E : Type u_7} [TopologicalSpace E] [ContinuousENorm E] {X : Type u_8} [TopologicalSpace X] {f : X โ†’ E} :
Continuous f โ†’ Continuous fun (x : X) => โ€–f xโ€–โ‚‘
theorem ContinuousAt.enorm {E : Type u_7} [TopologicalSpace E] [ContinuousENorm E] {X : Type u_8} [TopologicalSpace X] {f : X โ†’ E} {a : X} (h : ContinuousAt f a) :
ContinuousAt (fun (x : X) => โ€–f xโ€–โ‚‘) a
theorem ContinuousWithinAt.enorm {E : Type u_7} [TopologicalSpace E] [ContinuousENorm E] {X : Type u_8} [TopologicalSpace X] {f : X โ†’ E} {s : Set X} {a : X} (h : ContinuousWithinAt f s a) :
theorem ContinuousOn.enorm {E : Type u_7} [TopologicalSpace E] [ContinuousENorm E] {X : Type u_8} [TopologicalSpace X] {f : X โ†’ E} {s : Set X} (h : ContinuousOn f s) :
ContinuousOn (fun (x : X) => โ€–f xโ€–โ‚‘) s
theorem tendsto_iff_norm_div_tendsto_zero {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {f : ฮฑ โ†’ E} {a : Filter ฮฑ} {b : E} :
Filter.Tendsto f a (nhds b) โ†” Filter.Tendsto (fun (e : ฮฑ) => โ€–f e / bโ€–) a (nhds 0)
theorem tendsto_iff_norm_sub_tendsto_zero {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {f : ฮฑ โ†’ E} {a : Filter ฮฑ} {b : E} :
Filter.Tendsto f a (nhds b) โ†” Filter.Tendsto (fun (e : ฮฑ) => โ€–f e - bโ€–) a (nhds 0)
theorem tendsto_one_iff_norm_tendsto_zero {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {f : ฮฑ โ†’ E} {a : Filter ฮฑ} :
Filter.Tendsto f a (nhds 1) โ†” Filter.Tendsto (fun (x : ฮฑ) => โ€–f xโ€–) a (nhds 0)
theorem tendsto_zero_iff_norm_tendsto_zero {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {f : ฮฑ โ†’ E} {a : Filter ฮฑ} :
Filter.Tendsto f a (nhds 0) โ†” Filter.Tendsto (fun (x : ฮฑ) => โ€–f xโ€–) a (nhds 0)
theorem squeeze_one_norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {f : ฮฑ โ†’ E} {a : ฮฑ โ†’ โ„} {tโ‚€ : Filter ฮฑ} (h : โˆ€แถ  (n : ฮฑ) in tโ‚€, โ€–f nโ€– โ‰ค a n) (h' : Filter.Tendsto a tโ‚€ (nhds 0)) :
Filter.Tendsto f tโ‚€ (nhds 1)

Special case of the sandwich theorem: if the norm of f is eventually bounded by a real function a which tends to 0, then f tends to 1 (neutral element of SeminormedGroup). In this pair of lemmas (squeeze_one_norm' and squeeze_one_norm), following a convention of similar lemmas in Topology.MetricSpace.Basic and Topology.Algebra.Order, the ' version is phrased using "eventually" and the non-' version is phrased absolutely.

theorem squeeze_zero_norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {f : ฮฑ โ†’ E} {a : ฮฑ โ†’ โ„} {tโ‚€ : Filter ฮฑ} (h : โˆ€แถ  (n : ฮฑ) in tโ‚€, โ€–f nโ€– โ‰ค a n) (h' : Filter.Tendsto a tโ‚€ (nhds 0)) :
Filter.Tendsto f tโ‚€ (nhds 0)

Special case of the sandwich theorem: if the norm of f is eventually bounded by a real function a which tends to 0, then f tends to 0. In this pair of lemmas (squeeze_zero_norm' and squeeze_zero_norm), following a convention of similar lemmas in Topology.MetricSpace.Pseudo.Defs and Topology.Algebra.Order, the ' version is phrased using "eventually" and the non-' version is phrased absolutely.

theorem squeeze_one_norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {f : ฮฑ โ†’ E} {a : ฮฑ โ†’ โ„} {tโ‚€ : Filter ฮฑ} (h : โˆ€ (n : ฮฑ), โ€–f nโ€– โ‰ค a n) :
Filter.Tendsto a tโ‚€ (nhds 0) โ†’ Filter.Tendsto f tโ‚€ (nhds 1)

Special case of the sandwich theorem: if the norm of f is bounded by a real function a which tends to 0, then f tends to 1.

theorem squeeze_zero_norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {f : ฮฑ โ†’ E} {a : ฮฑ โ†’ โ„} {tโ‚€ : Filter ฮฑ} (h : โˆ€ (n : ฮฑ), โ€–f nโ€– โ‰ค a n) :
Filter.Tendsto a tโ‚€ (nhds 0) โ†’ Filter.Tendsto f tโ‚€ (nhds 0)

Special case of the sandwich theorem: if the norm of f is bounded by a real function a which tends to 0, then f tends to 0.

theorem tendsto_norm_div_self {E : Type u_4} [SeminormedGroup E] (x : E) :
Filter.Tendsto (fun (a : E) => โ€–a / xโ€–) (nhds x) (nhds 0)
theorem tendsto_norm_one {E : Type u_4} [SeminormedGroup E] :
Filter.Tendsto (fun (a : E) => โ€–aโ€–) (nhds 1) (nhds 0)

See tendsto_norm_one for a version with pointed neighborhoods.

theorem tendsto_norm_zero {E : Type u_4} [SeminormedAddGroup E] :
Filter.Tendsto (fun (a : E) => โ€–aโ€–) (nhds 0) (nhds 0)

See tendsto_norm_zero for a version with pointed neighborhoods.

@[deprecated Inseparable.enorm_eq_enorm (since := "2025-12-23")]

Alias of Inseparable.enorm_eq_enorm.

theorem Filter.Tendsto.norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {a : E} {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Tendsto f l (nhds a)) :
Tendsto (fun (x : ฮฑ) => โ€–f xโ€–) l (nhds โ€–aโ€–)
theorem Filter.Tendsto.norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {a : E} {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Tendsto f l (nhds a)) :
Tendsto (fun (x : ฮฑ) => โ€–f xโ€–) l (nhds โ€–aโ€–)
theorem Filter.Tendsto.nnnorm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {a : E} {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Tendsto f l (nhds a)) :
theorem Filter.Tendsto.nnnorm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {a : E} {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Tendsto f l (nhds a)) :
theorem Continuous.norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} :
Continuous f โ†’ Continuous fun (x : ฮฑ) => โ€–f xโ€–
theorem Continuous.norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} :
Continuous f โ†’ Continuous fun (x : ฮฑ) => โ€–f xโ€–
theorem Continuous.nnnorm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} :
Continuous f โ†’ Continuous fun (x : ฮฑ) => โ€–f xโ€–โ‚Š
theorem Continuous.nnnorm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} :
Continuous f โ†’ Continuous fun (x : ฮฑ) => โ€–f xโ€–โ‚Š
theorem Filter.Tendsto.enorm {ฮฑ : Type u_1} {E : Type u_4} [TopologicalSpace E] [ContinuousENorm E] {a : E} {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Tendsto f l (nhds a)) :
@[deprecated Filter.Tendsto.enorm (since := "2025-12-23")]
theorem Filter.Tendsto.enorm' {ฮฑ : Type u_1} {E : Type u_4} [TopologicalSpace E] [ContinuousENorm E] {a : E} {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Tendsto f l (nhds a)) :

Alias of Filter.Tendsto.enorm.

theorem ContinuousAt.norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {a : ฮฑ} (h : ContinuousAt f a) :
ContinuousAt (fun (x : ฮฑ) => โ€–f xโ€–) a
theorem ContinuousAt.norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {a : ฮฑ} (h : ContinuousAt f a) :
ContinuousAt (fun (x : ฮฑ) => โ€–f xโ€–) a
theorem ContinuousAt.nnnorm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {a : ฮฑ} (h : ContinuousAt f a) :
ContinuousAt (fun (x : ฮฑ) => โ€–f xโ€–โ‚Š) a
theorem ContinuousAt.nnnorm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {a : ฮฑ} (h : ContinuousAt f a) :
ContinuousAt (fun (x : ฮฑ) => โ€–f xโ€–โ‚Š) a
theorem ContinuousWithinAt.norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} {a : ฮฑ} (h : ContinuousWithinAt f s a) :
ContinuousWithinAt (fun (x : ฮฑ) => โ€–f xโ€–) s a
theorem ContinuousWithinAt.norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} {a : ฮฑ} (h : ContinuousWithinAt f s a) :
ContinuousWithinAt (fun (x : ฮฑ) => โ€–f xโ€–) s a
theorem ContinuousWithinAt.nnnorm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} {a : ฮฑ} (h : ContinuousWithinAt f s a) :
ContinuousWithinAt (fun (x : ฮฑ) => โ€–f xโ€–โ‚Š) s a
theorem ContinuousWithinAt.nnnorm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} {a : ฮฑ} (h : ContinuousWithinAt f s a) :
ContinuousWithinAt (fun (x : ฮฑ) => โ€–f xโ€–โ‚Š) s a
theorem ContinuousOn.norm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} (h : ContinuousOn f s) :
ContinuousOn (fun (x : ฮฑ) => โ€–f xโ€–) s
theorem ContinuousOn.norm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} (h : ContinuousOn f s) :
ContinuousOn (fun (x : ฮฑ) => โ€–f xโ€–) s
theorem ContinuousOn.nnnorm' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} (h : ContinuousOn f s) :
ContinuousOn (fun (x : ฮฑ) => โ€–f xโ€–โ‚Š) s
theorem ContinuousOn.nnnorm {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} (h : ContinuousOn f s) :
ContinuousOn (fun (x : ฮฑ) => โ€–f xโ€–โ‚Š) s
theorem eventually_ne_of_tendsto_norm_atTop' {ฮฑ : Type u_1} {E : Type u_4} [SeminormedGroup E] {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Filter.Tendsto (fun (y : ฮฑ) => โ€–f yโ€–) l Filter.atTop) (x : E) :
โˆ€แถ  (y : ฮฑ) in l, f y โ‰  x

If โ€–yโ€– โ†’ โˆž, then we can assume y โ‰  x for any fixed x.

theorem eventually_ne_of_tendsto_norm_atTop {ฮฑ : Type u_1} {E : Type u_4} [SeminormedAddGroup E] {l : Filter ฮฑ} {f : ฮฑ โ†’ E} (h : Filter.Tendsto (fun (y : ฮฑ) => โ€–f yโ€–) l Filter.atTop) (x : E) :
โˆ€แถ  (y : ฮฑ) in l, f y โ‰  x

If โ€–yโ€–โ†’โˆž, then we can assume yโ‰ x for any fixed x

theorem SeminormedCommGroup.mem_closure_iff {E : Type u_4} [SeminormedGroup E] {s : Set E} {a : E} :
a โˆˆ closure s โ†” โˆ€ (ฮต : โ„), 0 < ฮต โ†’ โˆƒ b โˆˆ s, โ€–a / bโ€– < ฮต
theorem SeminormedAddCommGroup.mem_closure_iff {E : Type u_4} [SeminormedAddGroup E] {s : Set E} {a : E} :
a โˆˆ closure s โ†” โˆ€ (ฮต : โ„), 0 < ฮต โ†’ โˆƒ b โˆˆ s, โ€–a - bโ€– < ฮต
theorem SeminormedGroup.tendstoUniformlyOn_one {ฮน : Type u_2} {ฮบ : Type u_3} {G : Type u_6} [SeminormedGroup G] {f : ฮน โ†’ ฮบ โ†’ G} {s : Set ฮบ} {l : Filter ฮน} :
TendstoUniformlyOn f 1 l s โ†” โˆ€ ฮต > 0, โˆ€แถ  (i : ฮน) in l, โˆ€ x โˆˆ s, โ€–f i xโ€– < ฮต
theorem SeminormedAddGroup.tendstoUniformlyOn_zero {ฮน : Type u_2} {ฮบ : Type u_3} {G : Type u_6} [SeminormedAddGroup G] {f : ฮน โ†’ ฮบ โ†’ G} {s : Set ฮบ} {l : Filter ฮน} :
TendstoUniformlyOn f 0 l s โ†” โˆ€ ฮต > 0, โˆ€แถ  (i : ฮน) in l, โˆ€ x โˆˆ s, โ€–f i xโ€– < ฮต
theorem SeminormedGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_one {ฮน : Type u_2} {ฮบ : Type u_3} {G : Type u_6} [SeminormedGroup G] {f : ฮน โ†’ ฮบ โ†’ G} {l : Filter ฮน} {l' : Filter ฮบ} :
UniformCauchySeqOnFilter f l l' โ†” TendstoUniformlyOnFilter (fun (n : ฮน ร— ฮน) (z : ฮบ) => f n.1 z / f n.2 z) 1 (l ร—หข l) l'
theorem SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero {ฮน : Type u_2} {ฮบ : Type u_3} {G : Type u_6} [SeminormedAddGroup G] {f : ฮน โ†’ ฮบ โ†’ G} {l : Filter ฮน} {l' : Filter ฮบ} :
UniformCauchySeqOnFilter f l l' โ†” TendstoUniformlyOnFilter (fun (n : ฮน ร— ฮน) (z : ฮบ) => f n.1 z - f n.2 z) 0 (l ร—หข l) l'
theorem SeminormedGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_one {ฮน : Type u_2} {ฮบ : Type u_3} {G : Type u_6} [SeminormedGroup G] {f : ฮน โ†’ ฮบ โ†’ G} {s : Set ฮบ} {l : Filter ฮน} :
UniformCauchySeqOn f l s โ†” TendstoUniformlyOn (fun (n : ฮน ร— ฮน) (z : ฮบ) => f n.1 z / f n.2 z) 1 (l ร—หข l) s
theorem SeminormedAddGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_zero {ฮน : Type u_2} {ฮบ : Type u_3} {G : Type u_6} [SeminormedAddGroup G] {f : ฮน โ†’ ฮบ โ†’ G} {s : Set ฮบ} {l : Filter ฮน} :
UniformCauchySeqOn f l s โ†” TendstoUniformlyOn (fun (n : ฮน ร— ฮน) (z : ฮบ) => f n.1 z - f n.2 z) 0 (l ร—หข l) s
theorem controlled_prod_of_mem_closure {E : Type u_4} [SeminormedCommGroup E] {a : E} {s : Subgroup E} (hg : a โˆˆ closure โ†‘s) {b : โ„• โ†’ โ„} (b_pos : โˆ€ (n : โ„•), 0 < b n) :
โˆƒ (v : โ„• โ†’ E), Filter.Tendsto (fun (n : โ„•) => โˆ i โˆˆ Finset.range (n + 1), v i) Filter.atTop (nhds a) โˆง (โˆ€ (n : โ„•), v n โˆˆ s) โˆง โ€–v 0 / aโ€– < b 0 โˆง โˆ€ (n : โ„•), 0 < n โ†’ โ€–v nโ€– < b n
theorem controlled_sum_of_mem_closure {E : Type u_4} [SeminormedAddCommGroup E] {a : E} {s : AddSubgroup E} (hg : a โˆˆ closure โ†‘s) {b : โ„• โ†’ โ„} (b_pos : โˆ€ (n : โ„•), 0 < b n) :
โˆƒ (v : โ„• โ†’ E), Filter.Tendsto (fun (n : โ„•) => โˆ‘ i โˆˆ Finset.range (n + 1), v i) Filter.atTop (nhds a) โˆง (โˆ€ (n : โ„•), v n โˆˆ s) โˆง โ€–v 0 - aโ€– < b 0 โˆง โˆ€ (n : โ„•), 0 < n โ†’ โ€–v nโ€– < b n
theorem controlled_prod_of_mem_closure_range {E : Type u_4} {F : Type u_5} [SeminormedCommGroup E] [SeminormedCommGroup F] {j : E โ†’* F} {b : F} (hb : b โˆˆ closure โ†‘j.range) {f : โ„• โ†’ โ„} (b_pos : โˆ€ (n : โ„•), 0 < f n) :
โˆƒ (a : โ„• โ†’ E), Filter.Tendsto (fun (n : โ„•) => โˆ i โˆˆ Finset.range (n + 1), j (a i)) Filter.atTop (nhds b) โˆง โ€–j (a 0) / bโ€– < f 0 โˆง โˆ€ (n : โ„•), 0 < n โ†’ โ€–j (a n)โ€– < f n
theorem controlled_sum_of_mem_closure_range {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] {j : E โ†’+ F} {b : F} (hb : b โˆˆ closure โ†‘j.range) {f : โ„• โ†’ โ„} (b_pos : โˆ€ (n : โ„•), 0 < f n) :
โˆƒ (a : โ„• โ†’ E), Filter.Tendsto (fun (n : โ„•) => โˆ‘ i โˆˆ Finset.range (n + 1), j (a i)) Filter.atTop (nhds b) โˆง โ€–j (a 0) - bโ€– < f 0 โˆง โˆ€ (n : โ„•), 0 < n โ†’ โ€–j (a n)โ€– < f n

See tendsto_norm_one for a version with full neighborhoods.

A version of comap_norm_nhdsGT_zero for a multiplicative normed group.