Documentation

Mathlib.Analysis.Normed.Group.Real

Norms on and ℝ≥0 #

We equip , ℝ≥0, and ℝ≥0∞ with their natural norms / enorms.

Tags #

normed group

theorem Real.norm_of_nonneg {r : } (hr : 0 r) :
theorem Real.norm_of_nonpos {r : } (hr : r 0) :
@[simp]
theorem Real.nnnorm_natCast (n : ) :
n‖₊ = n
@[simp]
theorem Real.enorm_natCast (n : ) :
n‖ₑ = n
@[simp]
theorem Real.norm_nnratCast (q : ℚ≥0) :
q = q
@[simp]
theorem norm_norm' {E : Type u_5} [SeminormedCommGroup E] (x : E) :