Documentation

Mathlib.Analysis.Normed.Lp.Matrix

Matrices are isomorphic with linear maps between Lp spaces #

This file provides a WithLp version of Matrix.toLin'.

def Matrix.toLpLin {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q : ENNReal) :
Matrix m n R โ‰ƒโ‚—[R] WithLp p (n โ†’ R) โ†’โ‚—[R] WithLp q (m โ†’ R)

Matrix.toLin' adapted for PiLp R _.

Equations
    Instances For
      @[simp]
      theorem Matrix.toLpLin_toLp {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q : ENNReal) (A : Matrix m n R) (x : n โ†’ R) :
      ((toLpLin p q) A) (WithLp.toLp p x) = WithLp.toLp q ((toLin' A) x)
      @[simp]
      theorem Matrix.ofLp_toLpLin {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q : ENNReal) (A : Matrix m n R) (x : WithLp p (n โ†’ R)) :
      (((toLpLin p q) A) x).ofLp = (toLin' A) x.ofLp
      theorem Matrix.toLpLin_apply {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q : ENNReal) (M : Matrix m n R) (v : WithLp p (n โ†’ R)) :
      ((toLpLin p q) M) v = WithLp.toLp q (M.mulVec v.ofLp)
      theorem Matrix.toLpLin_eq_toLin {m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q : ENNReal) [Finite m] :
      @[simp]
      theorem Matrix.toLpLin_one {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) :
      theorem Matrix.toLpLin_mul {m : Type u_1} {n : Type u_2} {o : Type u_3} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q r : ENNReal) [Fintype o] [DecidableEq o] (A : Matrix m n R) (B : Matrix n o R) :
      (toLpLin p r) (A * B) = (toLpLin q r) A โˆ˜โ‚— (toLpLin p q) B

      Note that applying this theorem needs an explicit choice of q.

      @[simp]
      theorem Matrix.toLpLin_mul_same {m : Type u_1} {n : Type u_2} {o : Type u_3} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) [Fintype o] [DecidableEq o] (A : Matrix m n R) (B : Matrix n o R) :
      (toLpLin p p) (A * B) = (toLpLin p p) A โˆ˜โ‚— (toLpLin p p) B

      A copy of toLpLin_mul that works for simp, for the common case where the domain and codomain have the same norm.

      @[simp]
      theorem Matrix.toLpLin_symm_id {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) :
      theorem Matrix.toLpLin_symm_comp {m : Type u_1} {n : Type u_2} {o : Type u_3} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p q r : ENNReal) [Fintype o] [DecidableEq o] (A : WithLp q (n โ†’ R) โ†’โ‚—[R] WithLp r (m โ†’ R)) (B : WithLp p (o โ†’ R) โ†’โ‚—[R] WithLp q (n โ†’ R)) :
      (toLpLin p r).symm (A โˆ˜โ‚— B) = (toLpLin q r).symm A * (toLpLin p q).symm B

      Note that applying this theorem needs an explicit choice of q.

      def Matrix.toLpLinAlgEquiv {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) :
      Matrix n n R โ‰ƒโ‚[R] Module.End R (WithLp p (n โ†’ R))

      Matrix.toLinAlgEquiv' adapted for PiLp R _.

      Equations
        Instances For
          @[simp]
          theorem Matrix.toLpLinAlgEquiv_apply_apply_ofLp {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) (a : Matrix n n R) (aโœ : WithLp p (n โ†’ R)) (aโœยน : n) :
          (((toLpLinAlgEquiv p) a) aโœ).ofLp aโœยน = a.mulVec aโœ.ofLp aโœยน
          @[simp]
          theorem Matrix.toLpLinAlgEquiv_symm_apply {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) (a : Module.End R (WithLp p (n โ†’ R))) :
          @[simp]
          theorem Matrix.toLpLin_pow {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) (A : Matrix n n R) (k : โ„•) :
          (toLpLin p p) (A ^ k) = (toLpLin p p) A ^ k
          @[simp]
          theorem Matrix.toLpLin_symm_pow {n : Type u_2} {R : Type u_4} [Fintype n] [DecidableEq n] [CommRing R] (p : ENNReal) (A : Module.End R (WithLp p (n โ†’ R))) (k : โ„•) :
          (toLpLin p p).symm (A ^ k) = (toLpLin p p).symm A ^ k