Documentation

Mathlib.Analysis.SpecialFunctions.Arsinh

Inverse of the sinh function #

In this file we prove that sinh is bijective and hence has an inverse, arsinh.

Main definitions #

Main Results #

Tags #

arsinh, arcsinh, argsinh, asinh, sinh injective, sinh bijective, sinh surjective

arsinh is defined using a logarithm, arsinh x = log (x + โˆš(1 + x^2)).

Equations
    Instances For
      @[simp]
      theorem Real.sinh_arsinh (x : โ„) :
      sinh (arsinh x) = x

      arsinh is the right inverse of sinh.

      @[simp]
      theorem Real.tanh_arsinh (x : โ„) :
      tanh (arsinh x) = x / โˆš(1 + x ^ 2)

      sinh is surjective, โˆ€ b, โˆƒ a, sinh a = b. In this case, we use a = arsinh b.

      sinh is bijective, both injective and surjective.

      @[simp]
      theorem Real.arsinh_sinh (x : โ„) :
      arsinh (sinh x) = x

      arsinh is the left inverse of sinh.

      theorem Filter.Tendsto.arsinh {ฮฑ : Type u_1} {l : Filter ฮฑ} {f : ฮฑ โ†’ โ„} {a : โ„} (h : Tendsto f l (nhds a)) :
      Tendsto (fun (x : ฮฑ) => Real.arsinh (f x)) l (nhds (Real.arsinh a))
      theorem ContinuousAt.arsinh {X : Type u_1} [TopologicalSpace X] {f : X โ†’ โ„} {a : X} (h : ContinuousAt f a) :
      ContinuousAt (fun (x : X) => Real.arsinh (f x)) a
      theorem ContinuousWithinAt.arsinh {X : Type u_1} [TopologicalSpace X] {f : X โ†’ โ„} {s : Set X} {a : X} (h : ContinuousWithinAt f s a) :
      ContinuousWithinAt (fun (x : X) => Real.arsinh (f x)) s a
      theorem ContinuousOn.arsinh {X : Type u_1} [TopologicalSpace X] {f : X โ†’ โ„} {s : Set X} (h : ContinuousOn f s) :
      ContinuousOn (fun (x : X) => Real.arsinh (f x)) s
      theorem Continuous.arsinh {X : Type u_1} [TopologicalSpace X] {f : X โ†’ โ„} (h : Continuous f) :
      Continuous fun (x : X) => Real.arsinh (f x)
      theorem HasStrictFDerivAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {a : E} {f' : StrongDual โ„ E} (hf : HasStrictFDerivAt f f' a) :
      HasStrictFDerivAt (fun (x : E) => Real.arsinh (f x)) ((โˆš(1 + f a ^ 2))โปยน โ€ข f') a
      theorem HasFDerivAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {a : E} {f' : StrongDual โ„ E} (hf : HasFDerivAt f f' a) :
      HasFDerivAt (fun (x : E) => Real.arsinh (f x)) ((โˆš(1 + f a ^ 2))โปยน โ€ข f') a
      theorem HasFDerivWithinAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {s : Set E} {a : E} {f' : StrongDual โ„ E} (hf : HasFDerivWithinAt f f' s a) :
      HasFDerivWithinAt (fun (x : E) => Real.arsinh (f x)) ((โˆš(1 + f a ^ 2))โปยน โ€ข f') s a
      theorem ContDiffAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {a : E} {n : โ„•โˆž} (h : ContDiffAt โ„ (โ†‘n) f a) :
      ContDiffAt โ„ (โ†‘n) (fun (x : E) => Real.arsinh (f x)) a
      theorem ContDiffWithinAt.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {s : Set E} {a : E} {n : โ„•โˆž} (h : ContDiffWithinAt โ„ (โ†‘n) f s a) :
      ContDiffWithinAt โ„ (โ†‘n) (fun (x : E) => Real.arsinh (f x)) s a
      theorem ContDiff.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {n : โ„•โˆž} (h : ContDiff โ„ (โ†‘n) f) :
      ContDiff โ„ โ†‘n fun (x : E) => Real.arsinh (f x)
      theorem ContDiffOn.arsinh {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {s : Set E} {n : โ„•โˆž} (h : ContDiffOn โ„ (โ†‘n) f s) :
      ContDiffOn โ„ (โ†‘n) (fun (x : E) => Real.arsinh (f x)) s
      theorem HasDerivAt.arsinh {f : โ„ โ†’ โ„} {a f' : โ„} (hf : HasDerivAt f f' a) :
      HasDerivAt (fun (x : โ„) => Real.arsinh (f x)) ((โˆš(1 + f a ^ 2))โปยน โ€ข f') a
      theorem HasDerivWithinAt.arsinh {f : โ„ โ†’ โ„} {s : Set โ„} {a f' : โ„} (hf : HasDerivWithinAt f f' s a) :
      HasDerivWithinAt (fun (x : โ„) => Real.arsinh (f x)) ((โˆš(1 + f a ^ 2))โปยน โ€ข f') s a