The positive (and negative) parts of a selfadjoint element in a Cā-algebra #
This file defines the positive and negative parts of a selfadjoint element in a Cā-algebra via the continuous functional calculus and develops the basic API, including the uniqueness of the positive and negative parts.
noncomputable instance
CStarAlgebra.instPosPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
:
PosPart A
Equations
noncomputable instance
CStarAlgebra.instNegPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
:
NegPart A
Equations
theorem
CFC.posPart_def
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
(a : A)
:
theorem
CFC.negPart_def
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
(a : A)
:
@[simp]
theorem
CFC.posPart_zero
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
:
@[simp]
theorem
CFC.negPart_zero
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
:
theorem
CFC.posPart_eq_zero_of_not_isSelfAdjoint
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
{a : A}
(ha : ¬IsSelfAdjoint a)
:
theorem
CFC.negPart_eq_zero_of_not_isSelfAdjoint
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
{a : A}
(ha : ¬IsSelfAdjoint a)
:
@[simp]
theorem
CFC.posPart_mul_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
(a : A)
:
@[simp]
theorem
CFC.negPart_mul_posPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
(a : A)
:
theorem
CFC.posPart_sub_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
@[simp]
theorem
CFC.posPart_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
(a : A)
:
@[simp]
theorem
CFC.negPart_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
(a : A)
:
@[simp]
theorem
CFC.posPart_smul
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
[StarModule ā A]
{r : NNReal}
{a : A}
:
@[simp]
theorem
CFC.negPart_smul
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
[StarModule ā A]
{r : NNReal}
{a : A}
:
theorem
CFC.posPart_smul_of_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
[StarModule ā A]
{r : ā}
(hr : 0 ⤠r)
{a : A}
:
theorem
CFC.posPart_smul_of_nonpos
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
[StarModule ā A]
{r : ā}
(hr : r ⤠0)
{a : A}
:
theorem
CFC.negPart_smul_of_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
[StarModule ā A]
{r : ā}
(hr : 0 ⤠r)
{a : A}
:
theorem
CFC.negPart_smul_of_nonpos
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
[StarModule ā A]
{r : ā}
(hr : r ⤠0)
{a : A}
:
theorem
CFC.posPart_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CFC.negPart_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
(a : A)
:
theorem
CFC.posPart_eq_of_eq_sub_negPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a b : A}
(hab : a = b - aā»)
(hb : 0 ⤠b := by cfc_tac)
:
theorem
CFC.negPart_eq_of_eq_PosPart_sub
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a c : A}
(hac : a = aāŗ - c)
(hc : 0 ⤠c := by cfc_tac)
:
theorem
CFC.le_posPart
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.neg_negPart_le
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.posPart_eq_self
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ā A]
(a : A)
:
theorem
CFC.negPart_eq_zero_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ā A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.negPart_eq_neg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ā A]
(a : A)
:
theorem
CFC.posPart_eq_zero_iff
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ā A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.posPart_negPart_unique
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ā A]
[IsTopologicalRing A]
[T2Space A]
{a b c : A}
(habc : a = b - c)
(hbc : b * c = 0)
(hb : 0 ⤠b := by cfc_tac)
(hc : 0 ⤠c := by cfc_tac)
:
The positive and negative parts of a selfadjoint element a are unique. That is, if
a = b - c is the difference of nonnegative elements whose product is zero, then these are
precisely aāŗ and aā».
@[simp]
theorem
CFC.posPart_one
{A : Type u_1}
[Ring A]
[Algebra ā A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
:
@[simp]
theorem
CFC.negPart_one
{A : Type u_1}
[Ring A]
[Algebra ā A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
:
@[simp]
theorem
CFC.posPart_algebraMap
{A : Type u_1}
[Ring A]
[Algebra ā A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
(r : ā)
:
@[simp]
theorem
CFC.negPart_algebraMap
{A : Type u_1}
[Ring A]
[Algebra ā A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
(r : ā)
:
@[simp]
theorem
CFC.posPart_algebraMap_nnreal
{A : Type u_1}
[Ring A]
[Algebra ā A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
(r : NNReal)
:
@[simp]
theorem
CFC.posPart_natCast
{A : Type u_1}
[Ring A]
[Algebra ā A]
[StarRing A]
[TopologicalSpace A]
[ContinuousFunctionalCalculus ā A IsSelfAdjoint]
[T2Space A]
(n : ā)
:
theorem
CStarAlgebra.linear_combination_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[StarModule ā A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
(x : A)
:
theorem
CStarAlgebra.span_nonneg
{A : Type u_1}
[NonUnitalRing A]
[Module ā A]
[SMulCommClass ā A A]
[IsScalarTower ā A A]
[StarRing A]
[TopologicalSpace A]
[StarModule ā A]
[NonUnitalContinuousFunctionalCalculus ā A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
:
A Cā-algebra is spanned by its nonnegative elements.