Japanese Bracket #
In this file, we show that Japanese bracket $(1 + \|x\|^2)^{1/2}$ can be estimated from above
and below by $1 + \|x\|$.
The functions $(1 + \|x\|^2)^{-r/2}$ and $(1 + |x|)^{-r}$ are integrable provided that r is larger
than the dimension.
Main statements #
integrable_one_add_norm: the function $(1 + |x|)^{-r}$ is integrableintegrable_japthe Japanese bracket is integrable
theorem
closedBall_rpow_sub_one_eq_empty_aux
(E : Type u_1)
[NormedAddCommGroup E]
{r t : โ}
(hr : 0 < r)
(ht : 1 < t)
:
theorem
finite_integral_one_add_norm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
[FiniteDimensional โ E]
[MeasurableSpace E]
[BorelSpace E]
{ฮผ : MeasureTheory.Measure E}
[ฮผ.IsAddHaarMeasure]
{r : โ}
(hnr : โ(Module.finrank โ E) < r)
:
theorem
integrable_one_add_norm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
[FiniteDimensional โ E]
[MeasurableSpace E]
[BorelSpace E]
{ฮผ : MeasureTheory.Measure E}
[ฮผ.IsAddHaarMeasure]
{r : โ}
(hnr : โ(Module.finrank โ E) < r)
:
theorem
integrable_rpow_neg_one_add_norm_sq
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
[FiniteDimensional โ E]
[MeasurableSpace E]
[BorelSpace E]
{ฮผ : MeasureTheory.Measure E}
[ฮผ.IsAddHaarMeasure]
{r : โ}
(hnr : โ(Module.finrank โ E) < r)
: