Derivatives of the tan and arctan functions. #
Continuity and derivatives of the tangent and arctangent functions.
theorem
Real.hasStrictDerivAt_tan
{x : โ}
(h : cos x โ 0)
:
HasStrictDerivAt tan (1 / cos x ^ 2) x
theorem
Real.tendsto_abs_tan_of_cos_eq_zero
{x : โ}
(hx : cos x = 0)
:
Filter.Tendsto (fun (x : โ) => |tan x|) (nhdsWithin x {x}แถ) Filter.atTop
@[simp]
@[simp]
Lemmas for derivatives of the composition of Real.arctan with a differentiable function #
In this section we register lemmas for the derivatives of the composition of Real.arctan with a
differentiable function, for standalone use and use with simp.
theorem
HasStrictDerivAt.arctan
{f : โ โ โ}
{f' x : โ}
(hf : HasStrictDerivAt f f' x)
:
HasStrictDerivAt (fun (x : โ) => Real.arctan (f x)) (1 / (1 + f x ^ 2) * f') x
theorem
HasDerivAt.arctan
{f : โ โ โ}
{f' x : โ}
(hf : HasDerivAt f f' x)
:
HasDerivAt (fun (x : โ) => Real.arctan (f x)) (1 / (1 + f x ^ 2) * f') x
theorem
HasDerivWithinAt.arctan
{f : โ โ โ}
{f' x : โ}
{s : Set โ}
(hf : HasDerivWithinAt f f' s x)
:
HasDerivWithinAt (fun (x : โ) => Real.arctan (f x)) (1 / (1 + f x ^ 2) * f') s x
theorem
derivWithin_arctan
{f : โ โ โ}
{x : โ}
{s : Set โ}
(hf : DifferentiableWithinAt โ f s x)
(hxs : UniqueDiffWithinAt โ s x)
:
@[simp]
theorem
HasStrictFDerivAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{f' : StrongDual โ E}
{x : E}
(hf : HasStrictFDerivAt f f' x)
:
HasStrictFDerivAt (fun (x : E) => Real.arctan (f x)) ((1 / (1 + f x ^ 2)) โข f') x
theorem
HasFDerivAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{f' : StrongDual โ E}
{x : E}
(hf : HasFDerivAt f f' x)
:
HasFDerivAt (fun (x : E) => Real.arctan (f x)) ((1 / (1 + f x ^ 2)) โข f') x
theorem
HasFDerivWithinAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{f' : StrongDual โ E}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
:
HasFDerivWithinAt (fun (x : E) => Real.arctan (f x)) ((1 / (1 + f x ^ 2)) โข f') s x
theorem
fderivWithin_arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt โ f s x)
(hxs : UniqueDiffWithinAt โ s x)
:
fderivWithin โ (fun (x : E) => Real.arctan (f x)) s x = (1 / (1 + f x ^ 2)) โข fderivWithin โ f s x
@[simp]
theorem
fderiv_arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{x : E}
(hc : DifferentiableAt โ f x)
:
theorem
DifferentiableWithinAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt โ f s x)
:
DifferentiableWithinAt โ (fun (x : E) => Real.arctan (f x)) s x
@[simp]
theorem
DifferentiableAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{x : E}
(hc : DifferentiableAt โ f x)
:
DifferentiableAt โ (fun (x : E) => Real.arctan (f x)) x
theorem
DifferentiableOn.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{s : Set E}
(hc : DifferentiableOn โ f s)
:
DifferentiableOn โ (fun (x : E) => Real.arctan (f x)) s
@[simp]
theorem
Differentiable.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
(hc : Differentiable โ f)
:
Differentiable โ fun (x : E) => Real.arctan (f x)
theorem
ContDiffAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{x : E}
{n : โโ}
(h : ContDiffAt โ (โn) f x)
:
ContDiffAt โ (โn) (fun (x : E) => Real.arctan (f x)) x
theorem
ContDiff.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{n : โโ}
(h : ContDiff โ (โn) f)
:
ContDiff โ โn fun (x : E) => Real.arctan (f x)
theorem
ContDiffWithinAt.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{x : E}
{s : Set E}
{n : โโ}
(h : ContDiffWithinAt โ (โn) f s x)
:
ContDiffWithinAt โ (โn) (fun (x : E) => Real.arctan (f x)) s x
theorem
ContDiffOn.arctan
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{f : E โ โ}
{s : Set E}
{n : โโ}
(h : ContDiffOn โ (โn) f s)
:
ContDiffOn โ (โn) (fun (x : E) => Real.arctan (f x)) s