Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv

Derivatives of the tan and arctan functions. #

Continuity and derivatives of the tangent and arctangent functions.

@[simp]
theorem Real.deriv_tan (x : โ„) :
deriv tan x = 1 / cos x ^ 2
@[simp]
theorem Real.deriv_arctan :
deriv arctan = fun (x : โ„) => 1 / (1 + x ^ 2)

Lemmas for derivatives of the composition of Real.arctan with a differentiable function #

In this section we register lemmas for the derivatives of the composition of Real.arctan with a differentiable function, for standalone use and use with simp.

theorem HasStrictDerivAt.arctan {f : โ„ โ†’ โ„} {f' x : โ„} (hf : HasStrictDerivAt f f' x) :
HasStrictDerivAt (fun (x : โ„) => Real.arctan (f x)) (1 / (1 + f x ^ 2) * f') x
theorem HasDerivAt.arctan {f : โ„ โ†’ โ„} {f' x : โ„} (hf : HasDerivAt f f' x) :
HasDerivAt (fun (x : โ„) => Real.arctan (f x)) (1 / (1 + f x ^ 2) * f') x
theorem HasDerivWithinAt.arctan {f : โ„ โ†’ โ„} {f' x : โ„} {s : Set โ„} (hf : HasDerivWithinAt f f' s x) :
HasDerivWithinAt (fun (x : โ„) => Real.arctan (f x)) (1 / (1 + f x ^ 2) * f') s x
theorem derivWithin_arctan {f : โ„ โ†’ โ„} {x : โ„} {s : Set โ„} (hf : DifferentiableWithinAt โ„ f s x) (hxs : UniqueDiffWithinAt โ„ s x) :
derivWithin (fun (x : โ„) => Real.arctan (f x)) s x = 1 / (1 + f x ^ 2) * derivWithin f s x
@[simp]
theorem deriv_arctan {f : โ„ โ†’ โ„} {x : โ„} (hc : DifferentiableAt โ„ f x) :
deriv (fun (x : โ„) => Real.arctan (f x)) x = 1 / (1 + f x ^ 2) * deriv f x
theorem HasStrictFDerivAt.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {f' : StrongDual โ„ E} {x : E} (hf : HasStrictFDerivAt f f' x) :
HasStrictFDerivAt (fun (x : E) => Real.arctan (f x)) ((1 / (1 + f x ^ 2)) โ€ข f') x
theorem HasFDerivAt.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {f' : StrongDual โ„ E} {x : E} (hf : HasFDerivAt f f' x) :
HasFDerivAt (fun (x : E) => Real.arctan (f x)) ((1 / (1 + f x ^ 2)) โ€ข f') x
theorem HasFDerivWithinAt.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {f' : StrongDual โ„ E} {x : E} {s : Set E} (hf : HasFDerivWithinAt f f' s x) :
HasFDerivWithinAt (fun (x : E) => Real.arctan (f x)) ((1 / (1 + f x ^ 2)) โ€ข f') s x
theorem fderivWithin_arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {x : E} {s : Set E} (hf : DifferentiableWithinAt โ„ f s x) (hxs : UniqueDiffWithinAt โ„ s x) :
fderivWithin โ„ (fun (x : E) => Real.arctan (f x)) s x = (1 / (1 + f x ^ 2)) โ€ข fderivWithin โ„ f s x
@[simp]
theorem fderiv_arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {x : E} (hc : DifferentiableAt โ„ f x) :
fderiv โ„ (fun (x : E) => Real.arctan (f x)) x = (1 / (1 + f x ^ 2)) โ€ข fderiv โ„ f x
@[simp]
theorem DifferentiableAt.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {x : E} (hc : DifferentiableAt โ„ f x) :
DifferentiableAt โ„ (fun (x : E) => Real.arctan (f x)) x
theorem ContDiffAt.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {x : E} {n : โ„•โˆž} (h : ContDiffAt โ„ (โ†‘n) f x) :
ContDiffAt โ„ (โ†‘n) (fun (x : E) => Real.arctan (f x)) x
theorem ContDiff.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {n : โ„•โˆž} (h : ContDiff โ„ (โ†‘n) f) :
ContDiff โ„ โ†‘n fun (x : E) => Real.arctan (f x)
theorem ContDiffWithinAt.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {x : E} {s : Set E} {n : โ„•โˆž} (h : ContDiffWithinAt โ„ (โ†‘n) f s x) :
ContDiffWithinAt โ„ (โ†‘n) (fun (x : E) => Real.arctan (f x)) s x
theorem ContDiffOn.arctan {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {f : E โ†’ โ„} {s : Set E} {n : โ„•โˆž} (h : ContDiffOn โ„ (โ†‘n) f s) :
ContDiffOn โ„ (โ†‘n) (fun (x : E) => Real.arctan (f x)) s