Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse

Inverse trigonometric functions. #

See also Analysis.SpecialFunctions.Trigonometric.Arctan for the inverse tan function. (This is delayed as it is easier to set up after developing complex trigonometric functions.)

Basic inequalities on trigonometric functions.

noncomputable def Real.arcsin :

Inverse of the sin function, returns values in the range -π / 2 ≤ arcsin x ≤ π / 2. It defaults to -π / 2 on (-∞, -1) and to π / 2 to (1, ∞).

Equations
    Instances For
      theorem Real.sin_arcsin' {x : } (hx : x Set.Icc (-1) 1) :
      sin (arcsin x) = x
      theorem Real.sin_arcsin {x : } (hx₁ : -1 x) (hx₂ : x 1) :
      sin (arcsin x) = x
      theorem Real.arcsin_sin' {x : } (hx : x Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) :
      arcsin (sin x) = x
      theorem Real.arcsin_sin {x : } (hx₁ : -(Real.pi / 2) x) (hx₂ : x Real.pi / 2) :
      arcsin (sin x) = x
      theorem Real.arcsin_lt_arcsin {x y : } (hx : -1 x) (hlt : x < y) (hy : y 1) :
      theorem Real.arcsin_inj {x y : } (hx₁ : -1 x) (hx₂ : x 1) (hy₁ : -1 y) (hy₂ : y 1) :
      arcsin x = arcsin y x = y
      theorem Real.arcsin_eq_of_sin_eq {x y : } (h₁ : sin x = y) (h₂ : x Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) :
      arcsin y = x
      @[simp]
      theorem Real.arcsin_neg (x : ) :
      theorem Real.arcsin_le_iff_le_sin {x y : } (hx : x Set.Icc (-1) 1) (hy : y Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) :
      arcsin x y x sin y
      theorem Real.le_arcsin_iff_sin_le {x y : } (hx : x Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) (hy : y Set.Icc (-1) 1) :
      x arcsin y sin x y
      theorem Real.arcsin_lt_iff_lt_sin {x y : } (hx : x Set.Icc (-1) 1) (hy : y Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) :
      arcsin x < y x < sin y
      theorem Real.lt_arcsin_iff_sin_lt {x y : } (hx : x Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) (hy : y Set.Icc (-1) 1) :
      x < arcsin y sin x < y
      @[simp]
      theorem Real.arcsin_nonneg {x : } :
      0 arcsin x 0 x
      @[simp]
      theorem Real.arcsin_nonpos {x : } :
      arcsin x 0 x 0
      @[simp]
      theorem Real.arcsin_eq_zero_iff {x : } :
      arcsin x = 0 x = 0
      @[simp]
      theorem Real.zero_eq_arcsin_iff {x : } :
      0 = arcsin x x = 0
      @[simp]
      theorem Real.arcsin_pos {x : } :
      0 < arcsin x 0 < x
      @[simp]
      theorem Real.arcsin_lt_zero {x : } :
      arcsin x < 0 x < 0
      theorem Real.cos_arcsin (x : ) :
      cos (arcsin x) = (1 - x ^ 2)
      theorem Real.tan_arcsin (x : ) :
      tan (arcsin x) = x / (1 - x ^ 2)
      noncomputable def Real.arccos (x : ) :

      Inverse of the cos function, returns values in the range 0 ≤ arccos x and arccos x ≤ π. It defaults to π on (-∞, -1) and to 0 to (1, ∞).

      Equations
        Instances For
          @[simp]
          theorem Real.arccos_pos {x : } :
          0 < arccos x x < 1
          theorem Real.cos_arccos {x : } (hx₁ : -1 x) (hx₂ : x 1) :
          cos (arccos x) = x
          theorem Real.arccos_cos {x : } (hx₁ : 0 x) (hx₂ : x Real.pi) :
          arccos (cos x) = x
          theorem Real.arccos_eq_of_eq_cos {x y : } (hy₀ : 0 y) (hy₁ : y Real.pi) (hxy : x = cos y) :
          arccos x = y
          theorem Real.arccos_lt_arccos {x y : } (hx : -1 x) (hlt : x < y) (hy : y 1) :
          theorem Real.arccos_inj {x y : } (hx₁ : -1 x) (hx₂ : x 1) (hy₁ : -1 y) (hy₂ : y 1) :
          arccos x = arccos y x = y
          @[simp]
          theorem Real.arccos_eq_zero {x : } :
          arccos x = 0 1 x
          theorem Real.arccos_of_one_le {x : } (hx : 1 x) :
          arccos x = 0
          theorem Real.sin_arccos (x : ) :
          sin (arccos x) = (1 - x ^ 2)
          theorem Real.tan_arccos (x : ) :
          tan (arccos x) = (1 - x ^ 2) / x
          theorem Real.arccos_eq_arcsin {x : } (h : 0 x) :
          arccos x = arcsin (1 - x ^ 2)
          theorem Real.arcsin_eq_arccos {x : } (h : 0 x) :
          arcsin x = arccos (1 - x ^ 2)

          Real.sin as an OpenPartialHomeomorph between (-π / 2, π / 2) and (-1, 1).

          Equations
            Instances For

              Real.sin and Real.arcsin as a (partial) equivalence from [-(π / 2), (π / 2)] to [-1, 1]

              Equations
                Instances For

                  Real.cos as an OpenPartialHomeomorph between (0, π) and (-1, 1).

                  Equations
                    Instances For

                      Real.cos and Real.arccos as a (partial) equivalence from [0, π] to [-1, 1]

                      Equations
                        Instances For

                          Convenience dot notation lemmas #

                          theorem Filter.Tendsto.arcsin {α : Type u_1} {l : Filter α} {x : } {f : α} (h : Tendsto f l (nhds x)) :
                          Tendsto (fun (x : α) => Real.arcsin (f x)) l (nhds (Real.arcsin x))
                          theorem Filter.Tendsto.arcsin_nhdsLE {α : Type u_1} {l : Filter α} {x : } {f : α} (h : Tendsto f l (nhdsWithin x (Set.Iic x))) :
                          Tendsto (fun (x : α) => Real.arcsin (f x)) l (nhdsWithin (Real.arcsin x) (Set.Iic (Real.arcsin x)))
                          theorem Filter.Tendsto.arcsin_nhdsGE {α : Type u_1} {l : Filter α} {x : } {f : α} (h : Tendsto f l (nhdsWithin x (Set.Ici x))) :
                          Tendsto (fun (x : α) => Real.arcsin (f x)) l (nhdsWithin (Real.arcsin x) (Set.Ici (Real.arcsin x)))
                          theorem Filter.Tendsto.arccos {α : Type u_1} {l : Filter α} {x : } {f : α} (h : Tendsto f l (nhds x)) :
                          Tendsto (fun (x : α) => Real.arccos (f x)) l (nhds (Real.arccos x))
                          theorem Filter.Tendsto.arccos_nhdsLE {α : Type u_1} {l : Filter α} {x : } {f : α} (h : Tendsto f l (nhdsWithin x (Set.Iic x))) :
                          Tendsto (fun (x : α) => Real.arccos (f x)) l (nhdsWithin (Real.arccos x) (Set.Ici (Real.arccos x)))
                          theorem Filter.Tendsto.arccos_nhdsGE {α : Type u_1} {l : Filter α} {x : } {f : α} (h : Tendsto f l (nhdsWithin x (Set.Ici x))) :
                          Tendsto (fun (x : α) => Real.arccos (f x)) l (nhdsWithin (Real.arccos x) (Set.Iic (Real.arccos x)))
                          theorem ContinuousWithinAt.arcsin {X : Type u_1} [TopologicalSpace X] {f : X} {s : Set X} {x : X} (h : ContinuousWithinAt f s x) :
                          ContinuousWithinAt (fun (x : X) => Real.arcsin (f x)) s x
                          theorem ContinuousWithinAt.arccos {X : Type u_1} [TopologicalSpace X] {f : X} {s : Set X} {x : X} (h : ContinuousWithinAt f s x) :
                          ContinuousWithinAt (fun (x : X) => Real.arccos (f x)) s x
                          theorem ContinuousAt.arcsin {X : Type u_1} [TopologicalSpace X] {f : X} {x : X} (h : ContinuousAt f x) :
                          ContinuousAt (fun (x : X) => Real.arcsin (f x)) x
                          theorem ContinuousAt.arccos {X : Type u_1} [TopologicalSpace X] {f : X} {x : X} (h : ContinuousAt f x) :
                          ContinuousAt (fun (x : X) => Real.arccos (f x)) x
                          theorem ContinuousOn.arcsin {X : Type u_1} [TopologicalSpace X] {f : X} {s : Set X} (h : ContinuousOn f s) :
                          ContinuousOn (fun (x : X) => Real.arcsin (f x)) s
                          theorem ContinuousOn.arccos {X : Type u_1} [TopologicalSpace X] {f : X} {s : Set X} (h : ContinuousOn f s) :
                          ContinuousOn (fun (x : X) => Real.arccos (f x)) s
                          theorem Continuous.arcsin {X : Type u_1} [TopologicalSpace X] {f : X} (h : Continuous f) :
                          Continuous fun (x : X) => Real.arcsin (f x)
                          theorem Continuous.arccos {X : Type u_1} [TopologicalSpace X] {f : X} (h : Continuous f) :
                          Continuous fun (x : X) => Real.arccos (f x)