The dualizing functor on Cat #
We define a (strict) functor opFunctor and an equivalence assigning opposite categories to
categories. We then show that this functor is strictly involutive and that it induces an
equivalence on Cat.
The endofunctor Cat โฅค Cat assigning to each category its opposite category.
Equations
Instances For
@[simp]
The natural isomorphism between the double application of Cat.opFunctor and the
identity functor on Cat.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
CategoryTheory.Cat.opFunctorInvolutive_hom_app_toFunctor_obj
(X : Cat)
(Xโ : (โX)แตแตแตแต)
:
The equivalence Cat โ Cat associating each category with its opposite category.
Equations
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.Cat.opEquivalence_counitIso :
opEquivalence.counitIso = NatIso.ofComponents
(fun (x : Cat) => { hom := (unopUnop โx).toCatHom, inv := (opOp โx).toCatHom, hom_inv_id := โฏ, inv_hom_id := โฏ })
@opEquivalence._proof_4
@[simp]
@[simp]
theorem
CategoryTheory.Cat.opEquivalence_unitIso :
opEquivalence.unitIso = NatIso.ofComponents
(fun (x : Cat) => { hom := (opOp โx).toCatHom, inv := (unopUnop โx).toCatHom, hom_inv_id := โฏ, inv_hom_id := โฏ })
@opEquivalence._proof_3