Documentation

Mathlib.CategoryTheory.Category.Cat.Op

The dualizing functor on Cat #

We define a (strict) functor opFunctor and an equivalence assigning opposite categories to categories. We then show that this functor is strictly involutive and that it induces an equivalence on Cat.

The endofunctor Cat โฅค Cat assigning to each category its opposite category.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Cat.opFunctor_map {Xโœ Yโœ : Cat} (F : Xโœ โŸถ Yโœ) :

      The natural isomorphism between the double application of Cat.opFunctor and the identity functor on Cat.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Cat.opFunctorInvolutive_inv_app_toFunctor_map (X : Cat) {Xโœ Yโœ : โ†‘X} (f : Xโœ โŸถ Yโœ) :

          The equivalence Cat โ‰Œ Cat associating each category with its opposite category.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Cat.opEquivalence_counitIso :
              opEquivalence.counitIso = NatIso.ofComponents (fun (x : Cat) => { hom := (unopUnop โ†‘x).toCatHom, inv := (opOp โ†‘x).toCatHom, hom_inv_id := โ‹ฏ, inv_hom_id := โ‹ฏ }) @opEquivalence._proof_4
              @[simp]
              theorem CategoryTheory.Cat.opEquivalence_unitIso :
              opEquivalence.unitIso = NatIso.ofComponents (fun (x : Cat) => { hom := (opOp โ†‘x).toCatHom, inv := (unopUnop โ†‘x).toCatHom, hom_inv_id := โ‹ฏ, inv_hom_id := โ‹ฏ }) @opEquivalence._proof_3