Documentation

Mathlib.CategoryTheory.Category.Preorder

Preorders as categories #

We install a category instance on any preorder. This is not to be confused with the category of preorders, defined in Order.Category.Preorder.

We show that monotone functions between preorders correspond to functors of the associated categories.

Main definitions #

@[instance 100]
instance Preorder.smallCategory (ฮฑ : Type u) [Preorder ฮฑ] :

The category structure coming from a preorder. There is a morphism X โŸถ Y if and only if X โ‰ค Y.

Because we don't allow morphisms to live in Prop, we have to define X โŸถ Y as ULift (PLift (X โ‰ค Y)). See CategoryTheory.homOfLE and CategoryTheory.leOfHom.

Equations
    instance Preorder.subsingleton_hom {ฮฑ : Type u} [Preorder ฮฑ] (U V : ฮฑ) :
    def CategoryTheory.homOfLE {X : Type u} [Preorder X] {x y : X} (h : x โ‰ค y) :

    Express an inequality as a morphism in the corresponding preorder category.

    Equations
      Instances For
        @[reducible, inline]
        abbrev LE.le.hom {X : Type u_1} [Preorder X] {x y : X} (h : x โ‰ค y) :

        Express an inequality as a morphism in the corresponding preorder category.

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.homOfLE_comp {X : Type u} [Preorder X] {x y z : X} (h : x โ‰ค y) (k : y โ‰ค z) :
            theorem CategoryTheory.leOfHom {X : Type u} [Preorder X] {x y : X} (h : x โŸถ y) :

            Extract the underlying inequality from a morphism in a preorder category.

            @[reducible, inline]
            abbrev Quiver.Hom.le {X : Type u_1} [Preorder X] {x y : X} (h : x โŸถ y) :

            Extract the underlying inequality from a morphism in a preorder category.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.homOfLE_leOfHom {X : Type u} [Preorder X] {x y : X} (h : x โŸถ y) :
                โ‹ฏ.hom = h
                theorem CategoryTheory.homOfLE_isIso_of_eq {X : Type u} [Preorder X] {x y : X} (h : x โ‰ค y) (heq : x = y) :
                theorem CategoryTheory.isIso_homOfLE {X : Type u} [Preorder X] {x y : X} (h : x = y) :
                IsIso (homOfLE โ‹ฏ)
                @[simp]
                theorem CategoryTheory.homOfLE_comp_eqToHom {X : Type u} [Preorder X] {a b c : X} (hab : a โ‰ค b) (hbc : b = c) :
                theorem CategoryTheory.homOfLE_comp_eqToHom_assoc {X : Type u} [Preorder X] {a b c : X} (hab : a โ‰ค b) (hbc : b = c) {Z : X} (h : c โŸถ Z) :
                @[simp]
                theorem CategoryTheory.eqToHom_comp_homOfLE {X : Type u} [Preorder X] {a b c : X} (hab : a = b) (hbc : b โ‰ค c) :
                theorem CategoryTheory.eqToHom_comp_homOfLE_assoc {X : Type u} [Preorder X] {a b c : X} (hab : a = b) (hbc : b โ‰ค c) {Z : X} (h : c โŸถ Z) :
                @[simp]
                theorem CategoryTheory.homOfLE_op_comp_eqToHom {X : Type u} [Preorder X] {a b c : X} (hab : b โ‰ค a) (hbc : Opposite.op b = Opposite.op c) :
                @[simp]
                theorem CategoryTheory.eqToHom_comp_homOfLE_op {X : Type u} [Preorder X] {a b c : X} (hab : Opposite.op a = Opposite.op b) (hbc : c โ‰ค b) :

                Construct a morphism in the opposite of a preorder category from an inequality.

                Equations
                  Instances For

                    The equivalence of categories from the order dual of a preordered type X to the opposite category of the preorder X.

                    Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.orderDualEquivalence_functor_map (X : Type u) [Preorder X] {Xโœ Yโœ : Xแต’แตˆ} (f : Xโœ โŸถ Yโœ) :
                        @[simp]
                        theorem CategoryTheory.orderDualEquivalence_counitIso (X : Type u) [Preorder X] :
                        (orderDualEquivalence X).counitIso = Iso.refl ({ obj := fun (x : Xแต’แต–) => OrderDual.toDual (Opposite.unop x), map := fun {X_1 Y : Xแต’แต–} (f : X_1 โŸถ Y) => homOfLE โ‹ฏ, map_id := โ‹ฏ, map_comp := โ‹ฏ }.comp { obj := fun (x : Xแต’แตˆ) => Opposite.op (OrderDual.ofDual x), map := fun {X_1 Y : Xแต’แตˆ} (f : X_1 โŸถ Y) => (homOfLE โ‹ฏ).op, map_id := โ‹ฏ, map_comp := โ‹ฏ })
                        @[simp]
                        theorem CategoryTheory.orderDualEquivalence_inverse_map (X : Type u) [Preorder X] {Xโœ Yโœ : Xแต’แต–} (f : Xโœ โŸถ Yโœ) :
                        def Monotone.functor {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] {f : X โ†’ Y} (h : Monotone f) :

                        A monotone function between preorders induces a functor between the associated categories.

                        Equations
                          Instances For
                            @[simp]
                            theorem Monotone.functor_obj {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] {f : X โ†’ Y} (h : Monotone f) :
                            instance instFullFunctor {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (f : X โ†ชo Y) :
                            โ‹ฏ.functor.Full
                            def OrderIso.equivalence {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (e : X โ‰ƒo Y) :

                            The equivalence of categories X โ‰Œ Y induced by e : X โ‰ƒo Y.

                            Equations
                              Instances For
                                theorem CategoryTheory.Functor.monotone {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (f : Functor X Y) :

                                A functor between preorder categories is monotone.

                                def CategoryTheory.Functor.toOrderHom {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (F : Functor X Y) :

                                A functor X โฅค Y between preorder categories as an OrderHom.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Functor.toOrderHom_coe {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (F : Functor X Y) (aโœ : X) :
                                    F.toOrderHom aโœ = F.obj aโœ
                                    @[reducible, inline]
                                    abbrev OrderHom.toFunctor {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (f : X โ†’o Y) :

                                    An OrderHom as a functor X โฅค Y between preorder categories.

                                    Equations
                                      Instances For

                                        The equivalence between X โ†’o Y and the type of functors X โฅค Y between preorder categories X and Y.

                                        Equations
                                          Instances For

                                            The categorical equivalence between the category of monotone functions X โ†’o Y and the category of functors X โฅค Y, where X and Y are preorder categories.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem OrderHom.equivalenceFunctor_counitIso_hom_app_app {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (Xโœ : CategoryTheory.Functor X Y) (Xโœยน : X) :
                                                (equivalenceFunctor.counitIso.hom.app Xโœ).app Xโœยน = CategoryTheory.CategoryStruct.id (Xโœ.obj Xโœยน)
                                                @[simp]
                                                theorem OrderHom.equivalenceFunctor_counitIso_inv_app_app {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] (Xโœ : CategoryTheory.Functor X Y) (Xโœยน : X) :
                                                (equivalenceFunctor.counitIso.inv.app Xโœ).app Xโœยน = CategoryTheory.CategoryStruct.id (Xโœ.obj Xโœยน)
                                                theorem CategoryTheory.Iso.to_eq {X : Type u} [PartialOrder X] {x y : X} (f : x โ‰… y) :
                                                x = y

                                                A categorical equivalence between partial orders is just an order isomorphism.

                                                Equations
                                                  Instances For