Documentation

Mathlib.CategoryTheory.Enriched.EnrichedCat

The bicategory of V-enriched categories #

We define the bicategory EnrichedCat V of (bundled) V-enriched categories for a fixed monoidal category V.

Future work #

def CategoryTheory.EnrichedCat (V : Type v) [Category.{w, v} V] [MonoidalCategory V] :
Type (max (u + 1) (max u v) w)

Category of V-enriched categories for a monoidal category V.

Equations
    Instances For

      Construct a bundled EnrichedCat from the underlying type and the typeclass.

      Equations
        Instances For

          Whisker a V-enriched natural transformation on the left.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.EnrichedCat.whiskerLeft_out_app {V : Type v} [Category.{w, v} V] [MonoidalCategory V] {C : Type u} [EnrichedCategory V C] {D : Type u₁} [EnrichedCategory V D] {E : Type uā‚‚} [EnrichedCategory V E] (F : EnrichedFunctor V C D) {G H : EnrichedFunctor V D E} (α : G ⟶ H) (X : ForgetEnrichment V C) :

              Whisker a V-enriched natural transformation on the right.

              Equations
                Instances For

                  Composing the V-enriched identity functor with any functor is isomorphic to that functor.

                  Equations
                    Instances For

                      Composing any V-enriched functor with the identity functor is isomorphic to the former functor.

                      Equations
                        Instances For

                          Composition of V-enriched functors is associative up to isomorphism.

                          Equations
                            Instances For
                              theorem CategoryTheory.EnrichedCat.comp_whiskerRight {V : Type v} [Category.{w, v} V] [MonoidalCategory V] {C : Type u} [EnrichedCategory V C] {D : Type u₁} [EnrichedCategory V D] {E : Type uā‚‚} [EnrichedCategory V E] {F G H : EnrichedFunctor V C D} (α : F ⟶ G) (β : G ⟶ H) (I : EnrichedFunctor V D E) :

                              The bicategory structure on EnrichedCat V for a monoidal category V.

                              Equations