Unbundled functors, as a typeclass decorating the object-level function. #
class
CategoryTheory.Functorial
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(F : C ā D)
:
Type (max vā vā uā uā)
An unbundled functor.
If
F : C ā D(just a function) has[Functorial F], we can writemap F f : F X ā¶ F Yfor the action ofFon a morphismf : X ā¶ Y.A functorial map preserves identities.
- map_comp {X Y Z : C} {f : X ā¶ Y} {g : Y ā¶ Z} : map F (CategoryStruct.comp f g) = CategoryStruct.comp (map F f) (map F g)
A functorial map preserves composition of morphisms.
Instances
def
CategoryTheory.Functor.of
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(F : C ā D)
[I : Functorial F]
:
Functor C D
Bundle a functorial function as a functor.
Equations
Instances For
instance
CategoryTheory.instFunctorialObj
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(F : Functor C D)
:
Equations
@[simp]
theorem
CategoryTheory.map_functorial_obj
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(F : Functor C D)
{X Y : C}
(f : X ā¶ Y)
:
Equations
def
CategoryTheory.functorial_comp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{E : Type uā}
[Category.{vā, uā} E]
(F : C ā D)
[Functorial F]
(G : D ā E)
[Functorial G]
:
Functorial (G ā F)
G ā F is a functorial if both F and G are.