Documentation

Mathlib.CategoryTheory.Functor.Functorial

Unbundled functors, as a typeclass decorating the object-level function. #

class CategoryTheory.Functorial {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : C → D) :
Type (max v₁ vā‚‚ u₁ uā‚‚)

An unbundled functor.

Instances
    def CategoryTheory.Functor.of {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : C → D) [I : Functorial F] :

    Bundle a functorial function as a functor.

    Equations
      Instances For
        @[simp]
        theorem CategoryTheory.map_functorial_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : Functor C D) {X Y : C} (f : X ⟶ Y) :
        map F.obj f = F.map f
        def CategoryTheory.functorial_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} E] (F : C → D) [Functorial F] (G : D → E) [Functorial G] :

        G ∘ F is a functorial if both F and G are.

        Equations
          Instances For