Vertex group #
This file defines the vertex group (aka isotropy group) of a groupoid at a vertex.
Implementation notes #
- The instance is defined "manually", instead of relying on
CategoryTheory.Aut.groupor usingCategoryTheory.inv. - The multiplication order therefore matches the categorical one:
x * y = x ≫ y. - The inverse is directly defined in terms of the groupoidal inverse:
x ⁻¹ = Groupoid.inv x.
Tags #
isotropy, vertex group, groupoid
The vertex group at c.
Equations
@[simp]
@[simp]
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroup.inv_eq_inv
{C : Type u}
[Groupoid C]
(c : C)
(γ : c ⟶ c)
:
The inverse in the group is equal to the inverse given by CategoryTheory.inv.
An arrow in the groupoid defines, by conjugation, an isomorphism of groups between its endpoints.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_apply
{C : Type u}
[Groupoid C]
{c d : C}
(f : c ⟶ d)
(γ : c ⟶ c)
:
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply
{C : Type u}
[Groupoid C]
{c d : C}
(f : c ⟶ d)
(δ : d ⟶ d)
:
def
CategoryTheory.Groupoid.vertexGroupIsomOfPath
{C : Type u}
[Groupoid C]
{c d : C}
(p : Quiver.Path c d)
:
A path in the groupoid defines an isomorphism between its endpoints.