Documentation

Mathlib.CategoryTheory.Limits.Preserves.Creates.Finite

Creation of finite limits #

This file defines the classes CreatesFiniteLimits, CreatesFiniteColimits, CreatesFiniteProducts and CreatesFiniteCoproducts.

class CategoryTheory.Limits.CreatesFiniteLimits {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : Functor C D) :
Type (max (max (max (max 1 u₁) uā‚‚) v₁) vā‚‚)

We say that a functor creates finite limits if it creates all limits of shape J where J : Type is a finite category.

Instances

    If F creates finite limits in any universe, then it creates finite limits.

    Equations
      Instances For

        Transfer creation of finite limits along a natural isomorphism in the functor.

        Equations
          Instances For
            class CategoryTheory.Limits.CreatesFiniteProducts {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : Functor C D) :
            Type (max (max (max (max 1 u₁) uā‚‚) v₁) vā‚‚)

            We say that a functor creates finite products if it creates all limits of shape Discrete J where J : Type is finite.

            Instances

              Transfer creation of finite products along a natural isomorphism in the functor.

              Equations
                Instances For
                  class CategoryTheory.Limits.CreatesFiniteColimits {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : Functor C D) :
                  Type (max (max (max (max 1 u₁) uā‚‚) v₁) vā‚‚)

                  We say that a functor creates finite colimits if it creates all colimits of shape J where J : Type is a finite category.

                  Instances

                    If F creates finite colimits in any universe, then it creates finite colimits.

                    Equations
                      Instances For

                        Transfer creation of finite colimits along a natural isomorphism in the functor.

                        Equations
                          Instances For
                            class CategoryTheory.Limits.CreatesFiniteCoproducts {C : Type u₁} [Category.{v₁, u₁} C] {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (F : Functor C D) :
                            Type (max (max (max (max 1 u₁) uā‚‚) v₁) vā‚‚)

                            We say that a functor creates finite limits if it creates all limits of shape J where J : Type is a finite category.

                            Instances

                              Transfer creation of finite limits along a natural isomorphism in the functor.

                              Equations
                                Instances For