Documentation

Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square

Preservation of pullback/pushout squares #

If a functor F : C โฅค D preserves suitable cospans (resp. spans), and sq : Square C is a pullback square (resp. a pushout square) then so is the square sq.map F.

The lemma Square.isPullback_iff_map_coyoneda_isPullback also shows that a square is a pullback square iff it is so after the application of the functor coyoneda.obj X for all X : Cแต’แต–. Similarly, a square is a pushout square iff the opposite square becomes a pullback square after the application of the functor yoneda.obj X for all X : C.

theorem CategoryTheory.Square.IsPullback.iff_of_equiv (sqโ‚ : Square (Type v)) (sqโ‚‚ : Square (Type u)) (eโ‚ : sqโ‚.Xโ‚ โ‰ƒ sqโ‚‚.Xโ‚) (eโ‚‚ : sqโ‚.Xโ‚‚ โ‰ƒ sqโ‚‚.Xโ‚‚) (eโ‚ƒ : sqโ‚.Xโ‚ƒ โ‰ƒ sqโ‚‚.Xโ‚ƒ) (eโ‚„ : sqโ‚.Xโ‚„ โ‰ƒ sqโ‚‚.Xโ‚„) (commโ‚โ‚‚ : โ‡‘eโ‚‚ โˆ˜ sqโ‚.fโ‚โ‚‚ = sqโ‚‚.fโ‚โ‚‚ โˆ˜ โ‡‘eโ‚) (commโ‚โ‚ƒ : โ‡‘eโ‚ƒ โˆ˜ sqโ‚.fโ‚โ‚ƒ = sqโ‚‚.fโ‚โ‚ƒ โˆ˜ โ‡‘eโ‚) (commโ‚‚โ‚„ : โ‡‘eโ‚„ โˆ˜ sqโ‚.fโ‚‚โ‚„ = sqโ‚‚.fโ‚‚โ‚„ โˆ˜ โ‡‘eโ‚‚) (commโ‚ƒโ‚„ : โ‡‘eโ‚„ โˆ˜ sqโ‚.fโ‚ƒโ‚„ = sqโ‚‚.fโ‚ƒโ‚„ โˆ˜ โ‡‘eโ‚ƒ) :
sqโ‚.IsPullback โ†” sqโ‚‚.IsPullback
theorem CategoryTheory.Square.IsPullback.of_equiv {sqโ‚ : Square (Type v)} {sqโ‚‚ : Square (Type u)} (eโ‚ : sqโ‚.Xโ‚ โ‰ƒ sqโ‚‚.Xโ‚) (eโ‚‚ : sqโ‚.Xโ‚‚ โ‰ƒ sqโ‚‚.Xโ‚‚) (eโ‚ƒ : sqโ‚.Xโ‚ƒ โ‰ƒ sqโ‚‚.Xโ‚ƒ) (eโ‚„ : sqโ‚.Xโ‚„ โ‰ƒ sqโ‚‚.Xโ‚„) (commโ‚โ‚‚ : โ‡‘eโ‚‚ โˆ˜ sqโ‚.fโ‚โ‚‚ = sqโ‚‚.fโ‚โ‚‚ โˆ˜ โ‡‘eโ‚) (commโ‚โ‚ƒ : โ‡‘eโ‚ƒ โˆ˜ sqโ‚.fโ‚โ‚ƒ = sqโ‚‚.fโ‚โ‚ƒ โˆ˜ โ‡‘eโ‚) (commโ‚‚โ‚„ : โ‡‘eโ‚„ โˆ˜ sqโ‚.fโ‚‚โ‚„ = sqโ‚‚.fโ‚‚โ‚„ โˆ˜ โ‡‘eโ‚‚) (commโ‚ƒโ‚„ : โ‡‘eโ‚„ โˆ˜ sqโ‚.fโ‚ƒโ‚„ = sqโ‚‚.fโ‚ƒโ‚„ โˆ˜ โ‡‘eโ‚ƒ) (hโ‚ : sqโ‚.IsPullback) :
sqโ‚‚.IsPullback