The diagonal object of a morphism. #
We provide various API and isomorphisms considering the diagonal object Ī_{Y/X} := pullback f f
of a morphism f : X ā¶ Y.
The diagonal object of a morphism f : X ā¶ Y is Ī_{X/Y} := pullback f f.
Equations
Instances For
The diagonal morphism X ā¶ Ī_{X/Y} for a morphism f : X ā¶ Y.
Equations
Instances For
The two projections Ī_{X/Y} ā¶ X form a kernel pair for f : X ā¶ Y.
The underlying map of pullbackDiagonalIso
Equations
Instances For
The underlying inverse of pullbackDiagonalIso
Equations
Instances For
This iso witnesses the fact that
given f : X ā¶ Y, i : U ā¶ Y, and iā : Vā ā¶ X Ć[Y] U, iā : Vā ā¶ X Ć[Y] U, the diagram
Vā Ć[X Ć[Y] U] Vā ā¶ Vā Ć[U] Vā
| |
| |
ā ā
X ā¶ X Ć[Y] X
is a pullback square.
Also see pullback_fst_map_snd_isPullback.
Equations
Instances For
This iso witnesses the fact that
given f : X ā¶ T, g : Y ā¶ T, and i : T ā¶ S, the diagram
X Ćā Y ā¶ X Ćā Y
| |
| |
ā ā
T ā¶ T Ćā T
is a pullback square.
Also see pullback_map_diagonal_isPullback.
Equations
Instances For
The diagonal object of X Ć[Z] Y ā¶ X is isomorphic to Ī_{Y/Z} Ć[Z] X.
Equations
Instances For
Informally, this is a special case of pullback_map_diagonal_isPullback for T = X.
Given the following diagram with S ā¶ S' a monomorphism,
X ā¶ X'
ā ā
S ā¶ S'
ā ā
Y ā¶ Y'
This iso witnesses the fact that
X Ć[S] Y ā¶ (X' Ć[S'] Y') Ć[Y'] Y
| |
| |
ā ā
(X' Ć[S'] Y') Ć[X'] X ā¶ X' Ć[S'] Y'
is a pullback square. The diagonal map of this square is pullback.map.
Also see pullback_lift_map_is_pullback.