Localization of product categories #
In this file, it is shown that if for all j : J (with J finite),
functors L j : C j ℤ D j are localization functors with respect
to a class of morphisms W j : MorphismProperty (C j), then the product
functor Functor.pi L : (ā j, C j) ℤ ā j, D j is a localization
functor for the product class of morphisms MorphismProperty.pi W.
The proof proceeds by induction on the cardinal of J using the
main result of the file Mathlib/CategoryTheory/Localization/Prod.lean.
instance
CategoryTheory.Functor.IsLocalization.pi
{J : Type w}
[Finite J]
{C : J ā Type uā}
{D : J ā Type uā}
[(j : J) ā Category.{vā, uā} (C j)]
[(j : J) ā Category.{vā, uā} (D j)]
(L : (j : J) ā Functor (C j) (D j))
(W : (j : J) ā MorphismProperty (C j))
[ā (j : J), (W j).ContainsIdentities]
[ā (j : J), (L j).IsLocalization (W j)]
:
instance
CategoryTheory.Functor.IsLocalization.instDiscreteObjWhiskeringRightFunctorCategoryOfFiniteOfContainsIdentities
{J : Type}
[Finite J]
{C : Type uā}
{D : Type uā}
[Category.{vā, uā} C]
[Category.{vā, uā} D]
(L : Functor C D)
(W : MorphismProperty C)
[W.ContainsIdentities]
[L.IsLocalization W]
:
((whiskeringRight (Discrete J) C D).obj L).IsLocalization (W.functorCategory (Discrete J))
If L : C ℤ D is a localization functor for W : MorphismProperty C, then
the induced functor (Discrete J ℤ C) ℤ (Discrete J ℤ D) is also a localization
for W.functorCategory (Discrete J) if W contains identities.