Documentation

Mathlib.CategoryTheory.Localization.Pi

Localization of product categories #

In this file, it is shown that if for all j : J (with J finite), functors L j : C j ℤ D j are localization functors with respect to a class of morphisms W j : MorphismProperty (C j), then the product functor Functor.pi L : (āˆ€ j, C j) ℤ āˆ€ j, D j is a localization functor for the product class of morphisms MorphismProperty.pi W. The proof proceeds by induction on the cardinal of J using the main result of the file Mathlib/CategoryTheory/Localization/Prod.lean.

instance CategoryTheory.Functor.IsLocalization.pi {J : Type w} [Finite J] {C : J → Type u₁} {D : J → Type uā‚‚} [(j : J) → Category.{v₁, u₁} (C j)] [(j : J) → Category.{vā‚‚, uā‚‚} (D j)] (L : (j : J) → Functor (C j) (D j)) (W : (j : J) → MorphismProperty (C j)) [āˆ€ (j : J), (W j).ContainsIdentities] [āˆ€ (j : J), (L j).IsLocalization (W j)] :

If L : C ℤ D is a localization functor for W : MorphismProperty C, then the induced functor (Discrete J ℤ C) ℤ (Discrete J ℤ D) is also a localization for W.functorCategory (Discrete J) if W contains identities.