Transport a symmetric monoidal structure along an equivalence of categories #
instance
CategoryTheory.Monoidal.Transported.instBraidedCategory
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(e : C ā D)
[MonoidalCategory C]
[BraidedCategory C]
:
Equations
instance
CategoryTheory.Monoidal.instBraidedTransportedInverseEquivalenceTransported
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(e : C ā D)
[MonoidalCategory C]
[BraidedCategory C]
:
Equations
def
CategoryTheory.Monoidal.transportedFunctorCompInverseLaxBraided
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(e : C ā D)
[MonoidalCategory C]
[BraidedCategory C]
:
This is a def because once we have that both (e' e).inverse and (e' e).functor are
braided, this causes a diamond.
Equations
Instances For
def
CategoryTheory.Monoidal.transportedFunctorCompInverseBraided
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(e : C ā D)
[MonoidalCategory C]
[BraidedCategory C]
:
This is a def because once we have that both (e' e).inverse and (e' e).functor are
braided, this causes a diamond.
Equations
Instances For
instance
CategoryTheory.Monoidal.instBraidedTransportedFunctorEquivalenceTransported
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(e : C ā D)
[MonoidalCategory C]
[BraidedCategory C]
:
Equations
instance
CategoryTheory.Monoidal.Transported.instSymmetricCategory
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
(e : C ā D)
[MonoidalCategory C]
[SymmetricCategory C]
: