The convolution monoid. #
When M : Comon C and N : Mon C, the morphisms M.X ā¶ N.X form a monoid (in Type).
The morphisms in C between the underlying objects of a pair of bimonoids in C naturally have a
(set-theoretic) monoid structure.
Equations
Instances For
instance
CategoryTheory.Conv.instOne
{C : Type uā}
[Category.{vā, uā} C]
[MonoidalCategory C]
{M N : C}
[ComonObj M]
[MonObj N]
:
Equations
theorem
CategoryTheory.Conv.one_eq
{C : Type uā}
[Category.{vā, uā} C]
[MonoidalCategory C]
{M N : C}
[ComonObj M]
[MonObj N]
:
instance
CategoryTheory.Conv.instMul
{C : Type uā}
[Category.{vā, uā} C]
[MonoidalCategory C]
{M N : C}
[ComonObj M]
[MonObj N]
:
Equations
theorem
CategoryTheory.Conv.mul_eq
{C : Type uā}
[Category.{vā, uā} C]
[MonoidalCategory C]
{M N : C}
[ComonObj M]
[MonObj N]
(f g : Conv M N)
:
instance
CategoryTheory.Conv.instMonoid
{C : Type uā}
[Category.{vā, uā} C]
[MonoidalCategory C]
{M N : C}
[ComonObj M]
[MonObj N]
: