Documentation

Mathlib.CategoryTheory.Monoidal.Internal.Module

Mon (ModuleCat R) β‰Œ AlgCat R #

The category of internal monoid objects in ModuleCat R is equivalent to the category of "native" bundled R-algebras.

Moreover, this equivalence is compatible with the forgetful functors to ModuleCat R.

Converting a monoid object in ModuleCat R to a bundled algebra.

Equations
    Instances For
      @[simp]
      theorem ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply {R : Type u} [CommRing R] {x✝ x✝¹ : CategoryTheory.Mon (ModuleCat R)} (f : x✝ ⟢ x✝¹) (a : ↑x✝.X) :

      Converting a bundled algebra to a monoid object in ModuleCat R.

      Equations
        Instances For

          Converting a bundled algebra to a monoid object in ModuleCat R.

          Equations
            Instances For

              The category of internal monoid objects in ModuleCat R is equivalent to the category of "native" bundled R-algebras.

              Equations
                Instances For

                  The equivalence Mon (ModuleCat R) β‰Œ AlgCat R is naturally compatible with the forgetful functors to ModuleCat R.

                  Equations
                    Instances For