Documentation

Mathlib.CategoryTheory.ObjectProperty.Shift

Properties of objects on categories equipped with shift #

Given a predicate P : ObjectProperty C on objects of a category equipped with a shift by A, we define shifted properties of objects P.shift a for all a : A. We also introduce a typeclass P.IsStableUnderShift A to say that P X implies P (X⟦a⟧) for all a : A.

Given a predicate P : C → Prop on objects of a category equipped with a shift by A, this is the predicate which is satisfied by X if P (X⟦a⟧).

Equations
    Instances For
      theorem CategoryTheory.ObjectProperty.prop_shift_iff {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a : A) (X : C) :
      P.shift a X P ((shiftFunctor C a).obj X)

      P : ObjectProperty C is stable under the shift by a : A if P X implies P X⟦a⟧.

      Instances

        P : ObjectProperty C is stable under the shift by A if P X implies P X⟦a⟧ for any a : A.

        Instances

          The closure by shifts and isomorphism of a predicate on objects in a category.

          Equations
            Instances For
              theorem CategoryTheory.ObjectProperty.prop_shiftClosure_iff {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (X : C) :
              P.shiftClosure A X ∃ (Y : C) (a : A) (x : X (shiftFunctor C a).obj Y), P Y
              @[irreducible]
              Equations
                noncomputable instance CategoryTheory.ObjectProperty.instCommShiftFullSubcategoryLift {C : Type u_1} [Category.{v_1, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] {E : Type u_3} [Category.{v_2, u_3} E] [HasShift E A] [P.IsStableUnderShift A] (F : Functor E C) (hF : ∀ (X : E), P (F.obj X)) [F.CommShift A] :
                (P.lift F hF).CommShift A
                Equations