Documentation

Mathlib.CategoryTheory.Preadditive.FunctorCategory

Preadditive structure on functor categories #

If C and D are categories and D is preadditive, then C ⥤ D is also preadditive.

def CategoryTheory.NatTrans.appHom {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) :
(F G) →+ (F.obj X G.obj X)

Application of a natural transformation at a fixed object, as group homomorphism

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.NatTrans.appHom_apply {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) :
      (appHom X) α = α.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_zero {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) :
      app 0 X = 0
      @[simp]
      theorem CategoryTheory.NatTrans.app_add {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α β : F G) :
      (α + β).app X = α.app X + β.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_sub {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α β : F G) :
      (α - β).app X = α.app X - β.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_neg {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) :
      (-α).app X = -α.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_nsmul {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) (n : ) :
      (n α).app X = n α.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_zsmul {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) (n : ) :
      (n α).app X = n α.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_units_zsmul {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) (n : ˣ) :
      (n α).app X = n α.app X
      @[simp]
      theorem CategoryTheory.NatTrans.app_sum {C : Type u_1} {D : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} D] [Preadditive D] {F G : Functor C D} {ι : Type u_3} (s : Finset ι) (X : C) (α : ι → (F G)) :
      (∑ is, α i).app X = is, (α i).app X