Documentation

Mathlib.CategoryTheory.Quotient.Preadditive

The quotient category is preadditive #

If an equivalence relation r : HomRel C on the morphisms of a preadditive category is compatible with the addition, then the quotient category Quotient r is also preadditive.

def CategoryTheory.Quotient.Preadditive.add {C : Type u_1} [Category.{v_1, u_1} C] [Preadditive C] (r : HomRel C) [Congruence r] (hr : āˆ€ ⦃X Y : C⦄ (f₁ fā‚‚ g₁ gā‚‚ : X ⟶ Y), r f₁ fā‚‚ → r g₁ gā‚‚ → r (f₁ + g₁) (fā‚‚ + gā‚‚)) {X Y : Quotient r} (f g : X ⟶ Y) :
X ⟶ Y

The addition on the morphisms in the category Quotient r when r is compatible with the addition.

Equations
    Instances For
      def CategoryTheory.Quotient.Preadditive.neg {C : Type u_1} [Category.{v_1, u_1} C] [Preadditive C] (r : HomRel C) [Congruence r] (hr : āˆ€ ⦃X Y : C⦄ (f₁ fā‚‚ g₁ gā‚‚ : X ⟶ Y), r f₁ fā‚‚ → r g₁ gā‚‚ → r (f₁ + g₁) (fā‚‚ + gā‚‚)) {X Y : Quotient r} (f : X ⟶ Y) :
      X ⟶ Y

      The negation on the morphisms in the category Quotient r when r is compatible with the addition.

      Equations
        Instances For
          def CategoryTheory.Quotient.preadditive {C : Type u_1} [Category.{v_1, u_1} C] [Preadditive C] (r : HomRel C) [Congruence r] (hr : āˆ€ ⦃X Y : C⦄ (f₁ fā‚‚ g₁ gā‚‚ : X ⟶ Y), r f₁ fā‚‚ → r g₁ gā‚‚ → r (f₁ + g₁) (fā‚‚ + gā‚‚)) :

          The preadditive structure on the category Quotient r when r is compatible with the addition.

          Equations
            Instances For
              theorem CategoryTheory.Quotient.functor_additive {C : Type u_1} [Category.{v_1, u_1} C] [Preadditive C] (r : HomRel C) [Congruence r] (hr : āˆ€ ⦃X Y : C⦄ (f₁ fā‚‚ g₁ gā‚‚ : X ⟶ Y), r f₁ fā‚‚ → r g₁ gā‚‚ → r (f₁ + g₁) (fā‚‚ + gā‚‚)) :