Documentation

Mathlib.CategoryTheory.ShrinkYoneda

The Yoneda functor for locally small categories #

Let C be a locally w-small category. We define the Yoneda embedding shrinkYoneda : C ⥤ Cᵒᵖ ⥤ Type w. (See the file CategoryTheory.Yoneda for the other variants yoneda and uliftYoneda.)

@[reducible, inline]

A functor to types F : C ⥤ Type w' is w-small if for any X : C, the type F.obj X is w-small.

Equations
    Instances For

      If a functor F : C ⥤ Type w' is w-small, this is the functor C ⥤ Type w obtained by shrinking F.obj X for all X : C.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.FunctorToTypes.shrink_map {C : Type u} [Category.{v, u} C] (F : Functor C (Type w')) [FunctorToTypes.Small.{w, w', v, u} F] {X✝ Y✝ : C} (f : X✝ Y✝) (a✝ : Shrink.{w, w'} (F.obj X✝)) :
          (shrink.{w, w', v, u} F).map f a✝ = ((equivShrink (F.obj Y✝)) F.map f (equivShrink (F.obj X✝)).symm) a✝

          The natural transformation shrink.{w} F ⟶ shrink.{w} G induces by a natural transformation τ : F ⟶ G between w-small functors to types.

          Equations
            Instances For

              The Yoneda embedding C ⥤ Cᵒᵖ ⥤ Type w for a locally w-small category C.

              Equations
                Instances For

                  The type (shrinkYoneda.obj X).obj Y is equivalent to Y.unop ⟶ X.

                  Equations
                    Instances For

                      The type of natural transformations shrinkYoneda.{w}.obj X ⟶ P with X : C and P : Cᵒᵖ ⥤ Type w is equivalent to P.obj (op X).

                      Equations
                        Instances For

                          The functor shrinkYoneda : C ⥤ Cᵒᵖ ⥤ Type w for a locally w-small category C is fully faithful.

                          Equations
                            Instances For