Sheaves for the coherent topology #
This file characterises sheaves for the coherent topology
Main result #
isSheaf_coherent: a presheaf of types is a sheaf for the coherent topology if and only if it satisfies the sheaf condition with respect to every presieve consisting of a finite effective epimorphic family.
theorem
CategoryTheory.isSheaf_coherent
{C : Type u_1}
[Category.{v_1, u_1} C]
[Precoherent C]
(P : Functor Cแตแต (Type w))
:
Presieve.IsSheaf (coherentTopology C) P โ โ (B : C) (ฮฑ : Type) [Finite ฮฑ] (X : ฮฑ โ C) (ฯ : (a : ฮฑ) โ X a โถ B),
EffectiveEpiFamily X ฯ โ Presieve.IsSheafFor P (Presieve.ofArrows X ฯ)
theorem
CategoryTheory.coherentTopology.isSheaf_yoneda_obj
{C : Type u_1}
[Category.{v_1, u_1} C]
[Precoherent C]
(W : C)
:
Presieve.IsSheaf (coherentTopology C) (yoneda.obj W)
Every Yoneda-presheaf is a sheaf for the coherent topology.
instance
CategoryTheory.coherentTopology.subcanonical
(C : Type u_1)
[Category.{v_1, u_1} C]
[Precoherent C]
:
The coherent topology on a precoherent category is subcanonical.